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Abstract

We settle the complexity status of the robust network design prob-
lem in undirected graphs. The fact that the flow-cut gap in general
graphs can be large, poses some difficulty in establishing a hardness re-
sult. Instead we introduce a single-source version of the problem where
the flow-cut gap is known to be one. We then show that this restricted
problem is coNP-Hard. This version also captures, as special cases, the
fractional relaxations of several problems including the spanning tree
problem, the Steiner tree problem, and the shortest path problem.

Keywords: network design, single-source hose model, robust optimiza-
tion.

1 Introduction

A crucial assumption in many network design problems is that of knowing
the traffic demands in advance. Unfortunately, measuring and predicting
traffic demands are difficult problems. Moreover, in several applications,
communication patterns change over time, and therefore we are not given
a single static traffic demand, but instead a set of non-simultaneous traffic
demands. The network should be able to support any traffic demand that
is from the given set.

“A preliminary version has appeared in Proc. of INOC, pages 455-461, 2005.



In this paper, we consider the following robust network design problem.
We are given a graph G = (V, E) on n nodes and a convex body Pp of
n X n non-negative “demand” matrices. We work primarily with undirected
graphs, although our main result holds also in the directed setting. We
denote by U(Pp) the set of all capacity reservations in G that support every
demand matrix D € Pp. We make this more precise now.

An instance will be called oriented if a demand between a pair of nodes
1,7 is distinguished by whether it starts at node 4, or at node 5. Otherwise,
it is called unoriented; in this case, D is a symmetric matrix where, for
each i, 7, the entries D;; = Dj; represent the same single demand between
1, 7. For instances where G is a directed graph, all demands are necessarily
oriented since they must be routed on directed paths from 7 to 7. However,
in undirected graphs, demands may be oriented or unoriented. Thus we
allow demand matrices D to be asymmetric even in undirected graphs, and,
in this case, D;; and Dj; identify distinct demands starting from ¢ and j
respectively. We work now in this oriented setting as it is more general; for
instance one can work with lower triangular matrices to mimic unoriented
demands. by requiring for each 4, that the entries D;; = Dj; represents
the same single demand between <, j.

We now define the region U(Pp). Let P;; denote the finite set of simple
paths between i and j.! An edge capacity reservation u : £ — R is in
U(Pp) (for oriented demands) if for each D € Pp and for each ordered pair
ij, there is an assignment f7 of flows to paths P in G such that for each 4j:
> pep, fp = Dij and for each edge e € E: 3, Yo PePyecP [P < ue. We
call the assignment f a feasible flow for the demands D. Note that U(Pp)
is convex. Given a cost vector ¢, our aim is to find a vector u € U(Pp)
that minimizes c¢-wu. In this note we settle the complexity of robust network
design, by establishing its coNP-hardness, even when Pp is given by a set
of explicit constraints whose size is polynomial in n. To our knowledge this
problem was first suggested in [4]; moreover, an O(logn) approximation can
be obtained [13].

We emphasize that, in our model, the routing can vary as the traffic
demand changes. The same hypothesis has been implicitly considered for a
robust network design problem in a recent paper [24], where the objective is
to minimize an appropriate measure of the set of the unsatisfied demands;
the authors propose a cutting-plane algorithm for the special case in which
Pp is the convex hull of a discrete number of scenarios.

!In principle, we could also define P;; to only be a subset of such paths which are
“feasible” for the demand from i to j.



Related work has addressed oblivious routing which is sometimes also
referred to as stable routing. The routing is oblivious in the sense that a
common routing template is used for each relevant traffic demand matrix.
More precisely, for each ordered pair of nodes ij (or unordered pair {i,75}
in some contexts), the routing specifies a unit flow: if D;; demand needs
to be routed for some traffic matrix D € Pp, then it simply scales the
unit flow by D;;. The robust network design problem with oblivious routing
is considered in [4] where a column-generation algorithm is studied. An
introduction to the use of polytopes for modeling traffic demand, under
an oblivious routing template, is given in [5]. The authors also suggest
a period-dependent routing as an intermediate strategy between oblivious
routing and fully dynamic routing, due to the inherent impracticalities to
implement the latter.

Another line of work seeks oblivious routings that minimize congestion.
More precisely, suppose we are given network G with a capacity reservation
u: E — Ri. A (not necessarily feasible) flow is said to have congestion
a if it becomes feasible after scaling up each capacity by a factor of a. A
congestion bound for a routing template (i.e., for an oblivious routing) is
a value § such that if a demand matrix D can be routed by some flow
with congestion «, then routing D using the template has a congestion of
at most af. For undirected graphs, Ricke [26] showed the existence of
oblivious routings with a congestion bound that is poly-logarithmic in n. In
[3, 2] algorithms are given (both for directed and undirected graphs) to find
oblivious routings with optimal congestion bounds. One may formulate this
problem of finding an oblivious routing, with a minimum congestion bound,
as a robust network optimization problem as follows. Let Pp be the set
of traffic matrices that can be routed in G with congestion at most 1. We
may restrict to these matrices since for any value a > 1, if a flow f routes a
matrix D with congestion 3, then the flow (1/a)f routes the matrix (1/a)D
with congestion . Hence a routing template has a congestion bound of 3 if
routing every demand matrix D € Pp, using the template, has a congestion
of at most 3. Thus the problem is to find a minimum S for which there is a
routing template such that each demand matrix in Pp is routed obliviously
using capacity at most [u, for each edge e. In [3], a polytime algorithm based
on the ellipsoid algorithm is given for this problem. In [2] another algorithm
is given by formulating the problem as a compact linear program. The latter
paper also considers the polytope Pp consisting of all matrices which are
“near” to a given target matrix. We note that the ellipsoid algorithm in
[3] also generalizes to the setting where one seeks a oblivious routing with
minimum congestion for demand matrices belonging to a given polytope Pp.



This is essentially the separation problem for the robust network design with
oblivious routing.

One well-studied special case of robust network design with oblivious
routing is where traffic is assumed to obey the so-called hose model, intro-
duced by Fingerhut et al. [10] and Duffield et al. [7]. In the symmetric
marginals model, each node i specifies a marginal traffic amount b; (usually
an integer), and a valid traffic matrix D is an assignment of unoriented de-
mands D;; that respects the cumulative upper bounds {b;}: for each i, we
have ) j D;; < b; where D;; = Dj; represent the demand between 7 and j.

In the asymmetric marginals version of the hose model, each node 7 has
two upper bounds, bj, b, , which represent upper bounds on the amount of
flow that the node ¢ can send and receive, respectively. In other words, for
a given bound vector b, the region Pp, denoted by P(G,b), is defined as:

P(G,b):={D>0:> Dy <bl andy Dj <b; for each node i}. (1)
J J

In the asymmetric marginal case, the network design problem is known
to be coNP-hard in directed graphs [15]. The complexity of the problem in
undirected graphs has not been established, even in the symmetric marginals
case when all b;’s are 1.

A related problem that has received particular attention is the so-called
(asymmetric) virtual private network design problem (VPN problem). In
this problem the region Pp is defined as in the asymmetric marginal case
of the hose model. The routing is required to be oblivious, and furthermore
it is restricted to use a single path for each pair of nodes. The asymmetric
VPN problem is coNP-hard, even when we restrict to tree reservations [15].
Nevertheless, there are cases where finding an optimal tree reservation is
easy, namely: 1) the asymmetric balanced case, i.e. when EveTb;“ = Yyerb;
[16]; 2) the symmetric case [15]. Constant factor approximation algorithms
for both the asymmetric and the symmetric VPN problems can be found in
[15, 16, 14, 8, 21], see [8] for a survey. In [1] a compact linear mixed-integer
programming formulation for the asymmetric problem is given; it is also
shown that this compact formulation allows to solve medium-to-large-size
instances to optimality with commercial solvers, while a branch-and-price
and cutting plane algorithm allows to tackle larger instances.

In [9] a cutting plane algorithm is devised to obtain empirical evidence
that allowing fractional routing templates leads to significant cost reductions
for the hose model. In [25] several robust design problems are considered; a



“robustness premium” is measured and empirical evidence based on equip-
ment costs is rendered. In [22], an argument similar to one from [2] is used
to obtain a compact LP formulation for maximizing throughput of oblivious
routings for the class of hose demand matrices.

Confusion often occurs since instances may have oriented or unoriented
demands, asymmetric or symmetric marginals, and flow vectors may be in
directed or undirected graphs. It is worth keeping in mind that for directed
graphs, or undirected graphs with asymmetric marginals, only oriented de-
mands make sense. While our result is essentially about unoriented demands
in undirected graphs, we found it simplest to present our proof in terms of
oriented demands in a single-source flow problem in undirected graphs.

2 Hardness of robust network design

We show that the separation problem for U(Pp) is coNP-complete. From
the equivalence of separation and optimization for linear programming [12],
we obtain coNP-hardness of robust network design. The key to this proof
is to consider a simpler class of robust design problems arising from single-
source demand matrices. In a single-source robust network design instance,
there is some root node r € V such that each matrix in Pp assigns positive
demands only to pairs of the form ri, while D;; = 0 if r # i.

ZDM < br

i#r
Dm' S bi V’i;ﬁ’l"
Dij = 0  r#i
D > 0

We denote by P(G,r,b) the corresponding polytope of demand matrices.
We also denote by U(G,r,b) the region U(P(G,r,b)). We recall that the
dominant of a convex body P in R" is the convex region {y € R" : y >
z for some z € P}.

We later need the following which is a simple exercise.

Fact 2.1 For integer vector b, each extreme point of P(G,r,b) is an integral
demand matriz D.

The single-source hose problem includes a number of interesting special
cases. Suppose b is a 0,1 vector with b, =1 and Z = {i : b; = 1}. Then



U(Pp) is the dominant of the fractional spanning tree polytope if Z = V|
and is otherwise the dominant of the fractional Steiner tree polytope with
terminal set Z. If b, = |V| — 1, and each b; = 1 if i # r, then U(Pp) is the
dominant of the convex hull of path trees rooted at r (i.e., edge capacitated
trees resulting from sending one unit of flow from each terminal to r). In
fact, minimum cost reservations will then correspond to shortest path trees
rooted at r. Note that the separation problem is easy in both the preceding
cases, and indeed also when b is integer with b, fixed. This is also true
when G is directed, where the two extremes correspond to the minimum
arborescence problem and shortest path routing trees.

A convex region P is a blocking convex body if it is equal to its dominant.
Note that U (Pp) is a blocking polyhedron for every polyhedron Pp. Given
« > 1, an a-separation algorithm for a convex polyhedron P is an algorithm
that does the following: given a vector z, it either declares that z ¢ P
and exhibits a violated hyperplane (i.e., an inequality ax < -y such that each
element of P satisfies this inequality, but z does not), or it correctly declares
that az € P. We observe that the approximate separation algorithm might
in some cases declare that z € P even if az € P. If a« = 1, we simply refer
to this as a separation algorithm.

Let G' = (V', E’) be an undirected graph with a given nonnegative edge
capacity function u : E' — RT. A subset S C V' is a light set if |S| < |V']/2.
The ezpansion of a set S is exp(S) := % where u(d¢ (S)) is the sum of
the capacities of the edges crossing the cut (S, V'\S). The ezpansion of G’ is
the minimum expansion of a light set: exp(G') = mingcyr |g/<|v7|/2 ezp(S).
It is well-known [11, 23] that it is coNP-hard to determine the expansion
of a graph. (Expansion is typically defined for uncapacitated graphs; [23]
refers to the weighted expansion as fluz.)

We will prove now that, for any integer k£ > 1, if there is a polynomial
time 2,%1—separation algorithm for the single-source hose problem, then
there is a polynomial time algorithm which, given an input graph G’, outputs
YES if exp(G’) > 1, NO if exp(G') < 1/k, and otherwise its output is not
defined. Since it is coNP-complete to decide if the expansion of a given graph
is at least 1 [11, 23] then, by establishing the above result, and taking k = 1,
we obtain coNP-completeness of the separation problem for the single-source
hose problem.

Let G’ be a given edge weighted graph. From G’ we obtain an instance
of the single-source hose design problem as follows. Construct a graph G =
(V, E) by taking two copies G1,G5 of G'. For an edge e € G’ with capacity
ue, we set the capacities of edges e; and ey equal to u./2, where e; and ey



are the copies of e in G1,Gs. For every node v in G’ we add an edge of
infinite capacity? between the two copies v1,vs of v. We add a root node r
and add an edge of capacity 1 from r to each node in G;. See Figure 1. Let
x be the resulting edge capacity vector on G. We set b, = (|[V|—1)/2 = |V|
and b; = 1 for each 7 # r.

G G

A
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Figure 1: Reduction from expansion.
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Claim 2.2 If exp(G') > 1, then x € U(G,r,b). If there is some light subset
S of G' such that exp(S) < t, then (f—fl)x ZU(G,r D).

Proof: Consider a subset S of G’ and for ¢ = 1,2 let S; be the copy of S in
G;. Set 8’ = S; US, in G. We then have:

2(6a(8) = 151+ D #(06,(S))
i=1,2
= [S]+u(dc(9)) (2)
= S|+ u(0e (V' = 9)). (3)

Equation (3) follows from Equation (2) since G’ is undirected.

Now, suppose S is a light subset of G’ with expansion less than % Since
S was light, there is some demand matrix in P(G,r,b) for which r wishes
to send |S’| units of flow to nodes in S’. By (2) z(6a(S")) < ||+ £15] =
(%)|S’|/2, and so even kQ—fIx ¢ U(G,r,b), as required.

Conversely, suppose that exp(G') > 1 but = ¢ U(G,r,b). Then there
is some demand matrix that cannot be supported. By Fact 2.1, there is

an integral such demand, where r is required to send one unit of flow to

2 A capacity of |V’| would be sufficient but it is comforting to think of the capacity as
infinite.



each node in a set Z of at most b, < |V'| nodes in G — r. Suppose S’
is a subset of G — r, that does not have enough capacity to support this
demand. That is, (d¢(S")) < |Z N S'|. Since this cut has finite capacity,
we have that S’ = Sy U Sy where for i« = 1,2, S; is the copy of a set S
of nodes from G’. Suppose first that S is light in G'. By (2) we have
that z(dq(S")) = |S| + u(de(S)) < |S" N Z| < 2|S], which implies that
u(de (S)) < |S], contradicting our assumption. So suppose that S is not
light, and hence V' — S is light. Thus by (3) z(dc(S")) = |S] + u(de (V' —
S)) < |S'NZ| < |Z| < |V'|. Hence u(d (V' —S)) < |[V'=S], a contradiction
to our assumption that exp(G') > 1. This completes the proof. O

We are now ready to prove the main result.

Theorem 2.3 For any integer k > 1, if there is a polynomial time QkL_H—

separation algorithm for the single-source hose problem, then there is a poly-
nomial time algorithm with the following property: given an input graph G’
it outputs YES if exp(G') > 1, NO if exp(G') < 1/k and otherwise its output
is not defined. In particular, taking k = 1 we get that the separation problem
for the single-source hose problem is coNP-complete. This holds even if we
restrict to instances where by € {0,1} for i # r.

Proof: Consider the following algorithm that takes the input graph G’. In
polynomial time, it constructs the graph G and z as described in the re-
duction above. It then queries the (kQ—fl)—approximate separation algorithm
to see if x € U(G,r,b). If the separation algorithm claims infeasibility of x,
the algorithm outputs NO on G’, otherwise it outputs YES. Using Claim
2.2, it is straightforward to check that the algorithm behaves correctly if
exp(G') > 1 or if exp(G') < 1/k. Further, the algorithm runs in polynomial

time. 0O

Theorem 2.3 establishes that if expansion can be shown to be hard to
approximate to within a factor of 1/k, then the separation problem is hard
to approximate to within a factor of 2k/(k + 1). Recently, under a particu-
lar complexity theoretic conjecture called the unique games conjecture (due
to Khot [18]), authors of [6] and [20] have independently shown that for
any fixed C' > 1, there is no polynomial time C-approximation algorithm
for graph expansion. In fact, like in most hardness results, a stronger gap
result is shown: it is hard to distinguish between instances with expansion
( and those with expansion §/C where 3 is some polynomial time com-
putable function of the input graph. The unique games conjecture states
that a certain constraint satisfaction problem is hard to approximate for



some parameter settings. This conjecture has been used to prove hardness
of approximation for several problems that have resisted previous attempts.
We refer the reader to a recent tutorial of Khot on various aspects of the
conjecture [19].

We immediately obtain the following corollary.

Corollary 2.4 If the unique games conjecture is true, for any fixed € >
0, the (2 — €)-separation problem for single-source hose problem is coNP-
complete. This holds even if we restrict to instances where b, = %Zi# b;.

We remark that the inapproximability result above relies only on the
hardness of expansion and might even hold even if the unique games con-
jecture is false.

We have established hardness for the case by = ¢}, . bi, where § = %
We close with a brief investigation of the complexity of the problem when
by = 03,4, b for a rational number § € (0,1). First, let § € (0,1/2].
Suppose 0 = s/t where s,t are integers. We may assume without loss of
generality that the graph G’, whose expansion we want to evaluate in the
proof of Theorem 2.3, is such that W(S—G,)‘ is integral. In fact, we may replace
each node of G’ by a complete graph of size s; if we give a sufficiently large
capacity to the edges in the complete graph, the expansion of the resulting
graph is the same as that of G'.

So assume that W is integral. We modify the construction of the
graph in the proof of Theorem 2.3 to show co-NP hardness for this case.
Let G = (V, E) be the graph constructed in the proof and let n = |V| =
2|V(G'")|+1. Note that b, = 2(n—1) = 3 iy bi- We construct a new graph

H by adding (55 — 1)(n — 1) extra nodes to G. We know that % = w

is an integer. The new nodes are connected only to r in the form of a star
by 0-cost edges and for each extra node ¢ we set b; = 1. In the new graph,
we have that »_, . b; = 55(n —1). We leave b, at 3(n — 1) and hence in the
new instance b, =0, £r b;. Clearly, an optimal design will set each new
edge to capacity 1 at 0-cost, and the only optimization to be done is on the
original edges. Hence the hardness for G carries over to the new instance.
This establishes that instances with b, =43, b; for § € (0,1/2] are hard.

Now we consider the case when § € (1/2,1). We use a scaling argu-
ment which when combined with Corollary 2.4 shows hardness for this case
assuming that the unique games conjecture is true. Suppose we are given
an instance of the single-source hose robust design problem for a graph G
with b, = % Zi# b;. We define a new instance of the problem on the same
graph G by altering the b values as follows. We set bl = b, and for i # r



we set b = 5sb;. Observe that b, = b, = 0D iy Ui = %Zi# b.. It can
be seen that a polynomial time separation algorithm for the new instance
directly translates into a polynomial time 2d-separation algorithm for the
original instance. Thus for any § < 1, a separation algorithm for instances
with b, =3, ,, b; would contradicting the (2 —¢)-hardness result of Corol-
lary 2.4.

Finally, we describe a simple approximation algorithm.

Theorem 2.5 There is a polytime max(%, 1)-approzimation algorithm for
the single-source hose robust design problem, for the class of instances where

bT‘ — 527/;&7,, bZ'

Proof: Let @ = min(¢,1). Recall that P(G,r,b) is the polytope of demand
matrices and U(G,r, b) the region U(P(G,r,b)). Let u* be an optimal reser-
vation vector. Consider the demand matrix D given by: D,; = .- b; for all
i #rand D;j =0ifd,§ # 7.

The demand matrix D belongs to P(G,r,b), therefore u* must support
it. Let  be a minimum cost capacity reservation supporting D: @ may be
evaluated by computing a shortest path tree rooted at r. Clearly, c-u < c-u*.
Observe that 1@ € U(P(G,r,b)) and therefore 1 is our l-approximate
solution. O

Note that the proof of Theorem 2.3 actually holds even for the restricted
version where b, is (about) one half of 37, b;, therefore in the case where
0= %, the inapproximability bound of Corollary 2.4 is tight. We mention
that we presently do not know whether there is a constant approximation
when the value of § is small.
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