
The Stable Paths Problem and Interdomain Routing

Timothy G. Griffin and F. Bruce Shepherd and Gordon Wilfong

Abstract—

Dynamic routing protocols such as RIP and OSPF essentially implement

distributed algorithms for solving the Shortest Paths Problem. The Border

Gateway Protocol (BGP) is currently the only interdomain routing proto-

col deployed in the Internet. BGP is not solving a shortest paths problem

since any interdomain protocol is required to allow policy-based metrics to

override distance-based metrics and enable autonomous systems to inde-

pendently define their routing policies with little or no global coordination.

It is then natural to ask if BGP can be viewed as a distributed algorithm for

solving some fundamental problem. We introduce the Stable Paths Problem

and show that BGP can be viewed as a distributed algorithm for solving

this problem. Unlike a shortest path tree, such a solution does not represent

a global optimum, but rather an equilibrium point in which each node is

assigned its local optimum.

We study the Stable Paths Problem using a derived structure called a

dispute wheel, representing conflicting routing policies at various nodes. We

show that if no dispute wheel can be constructed, then there exists a unique

solution for the Stable Paths Problem. We define the Simple Path Vector Pro-

tocol (SPVP), a distributed algorithm for solving the Stable Paths Problem.

SPVP is intended to capture the dynamic behavior of BGP at an abstract

level. If SPVP converges, then the resulting state corresponds to a stable

paths solution. If there is no solution, then SPVP always diverges. In fact,

SPVP can even diverge when a solution exists. We show that SPVP will

converge to the unique solution of an instance of the Stable Paths Problem

if no dispute wheel exists.

I. INTRODUCTION

The Border Gateway Protocol, BGP, is currently the only in-

terdomain routing protocol employed on the Internet [13], [18],

[19]. BGP allows each autonomous system to independently

formulate its routing policies, and it allows these policies to

override distance metrics in favor of policy concerns. In contrast

to pure distance-vector protocols such as RIP [2], [14], BGP is

not safe in the sense that routing policies can conflict in a manner

that causes BGP to diverge, resulting in persistent route oscilla-

tions [21]. Moreover, the safety of BGP routing policies may not

be robust with respect to network failures. Recent studies have

highlighted the adverse effects of interdomain routing instabil-

ity [16], [17]. Although it is not known if any of the observed

BGP instability has been caused by policy conflicts, in the worst

case such conflicts could introduce extreme oscillations into the

global routing system.

The goal of this paper is to clarify the nature of BGP policy

inconsistencies that give rise to protocol divergence. Our main

contribution is to describe a general condition on routing poli-

cies that guarantees safety and robustness.

We introduce the Stable Paths Problem (SPP), which captures

the underlying semantics of any path vector protocol such as

BGP. Just as routing protocols such as RIP and OSPF implement

distributed algorithms for solving the Shortest Paths Problem,

we claim that BGP can be viewed as a distributed algorithm for

solving the Stable Paths Problem. Informally, the Stable Paths

Problem consists of an undirected graph with a distinguished

node called the origin. All other nodes have a set of permitted

paths to the origin. Each node also has a ranking function on its

permitted paths that indicates an order of preference. A solution

to the Stable Paths Problem is an assignment of permitted paths

to nodes so that each node’s assigned path is its highest ranked

path extending any of the assigned paths at its neighbors. Such

a solution does not represent a global maximum, but rather an

equilibrium point in which each node is assigned its local maxi-

mum. In Section IV we introduce the Simple Path Vector Proto-

col as a distributed means of computing solutions to the Stable

Paths Problem.

We then study the Stable Paths Problem using a derived struc-

ture called a dispute wheel, which represents a circular set of

dependencies between routing policies that cannot be simulta-

neously satisfied. We show that if no dispute wheel can be

constructed, then the corresponding Stable Paths Problem has

a unique solution. We define the Simple Path Vector Protocol

(SPVP) as a distributed means of computing solutions to the Sta-

ble Paths Problem. We show that if there is no dispute wheel,

then SPVP is guaranteed to converge to the unique solution of

the corresponding Stable Paths Problem.

The paper is organized as follows. Section II provides a sim-

plified picture of how BGP operates and provides motivation for

the definition of the Stable Paths Problem. In Section III we

actually define the Stable Paths Problem (SPP). This formalism

provides a simple semantics for routing policies of path vector

protocols such as BGP while remaining free of many nonessen-

tial details. There is a tradeoff between the complexity of the

SPP formalism and the complexity of the translation from a set

of BGP routing policies to an instance of SPP. We opted for SPP

simplicity, since the theoretical results remain quite challeng-

ing even for this model. Hence numerous BGP-specific details,

such as internal BGP, confederations, route servers, private AS

numbers, and so on, are pushed into the translation.

The protocol SPVP is defined in IV. We analyze the Stable

Paths Problem in Section V. First, we explore the computa-

tional complexity of the Stable Paths Problem and show that the

problem of determining whether an instance of the Stable Paths

Problem has a solution is NP-complete. We define the notion of

a dispute wheel, and show that an instance of SPP with no dis-

pute wheel always has a unique solution. We also show that the

protocol SPVP can only diverge when there is a dispute wheel.

In Section VI we explore the relationship between the Stable

Paths and Shortest Paths Problems. SPP is different from short-

est paths problem for several reasons. First, the relative ranking

of paths in SPP is not, in general, based on path lengths. Sec-

ond, each node can reject paths arbitrarily, even shortest paths.

Even so, it seems a natural question to ask which instances of the

Stable Paths Problem are consistent with some edge cost func-

tion. Even in this case, one may find routing trees which are not

shortest path trees with respect to the cost function. However,

we show that any instance of the Stable Paths Problem that is

consistent with a cost function without non-positive cycles will

be safe. An immediate consequence of this is that if we ignore

internal BGP (IBGP), then BGP configurations that are simply

based on “hop count” are safe, even with “padding” of AS-paths.

2

On the other hand, we show that BGP-like systems can actually

violate “distance metrics” and remain safe.

Finally, Section VII discusses the implication of our results

for the Stable Paths Problem for real-world BGP as well as open

problems.

A. Related Work

Bertsekas et al. [1] prove convergence for a distributed ver-

sion of the Bellman-Ford shortest path algorithm. Because of

the differences between BGP and shortest path routing men-

tioned above, these results do not directly apply to a protocol

such as BGP.

In Varadhan et al. [21], the convergence properties of an ab-

straction of BGP is studied. They describe a system (similar to

BAD GADGET of Figure2) as an example of policies which

lead to divergence. In their setting, a node must update each

time it receives a new route-to-origin “advertisement” from one

of its neighbors. This is in contrast to our model where an ar-

bitrary update sequence determines when nodes process their

neighbor’s path choices. They also define the notion of an aux-

iliary graph, called a return graph, to study convergence. Return

graphs are defined only for systems with a ring topology, and a

restricted set of allowable paths at each node, namely the coun-

terclockwise paths. A return graph is defined as follows. For a

node v and two permitted paths P;Q from v to 0, they define an

arc (P;Q) if when storing P at v, and updating the nodes clock-

wise around the ring, the node v adopts Q when v is considered

again. Thus return graphs are defined by the dynamic behav-

ior of the system for a particular activation sequence whereas

the dispute wheels defined in this paper is based purely on the

static nature of the local preference functions of the nodes in

the system. In addition, we consider a more general evaluation

model, more general topologies, and arbitrary ranking of per-

mitted paths.

Gouda and Schneider [7], [8] have studied metrics which al-

ways have a maximal tree, that is, a tree in which every node

has its most preferred path to the origin contained in the tree.

This notion is different from the central notion of a stable tree

introduced in Section III. The latter is based on reaching a local

optimum as opposed to requiring each node having its globally

preferred path. A metric in their work corresponds to a method

for ranking paths based on a given assignment of values from a

prescribed set to the edges of the graph. In particular, this im-

plies a universal ranking of how desirable each path is. They

characterize the “maximizable” metrics, i.e., those which admit

a maximal tree for any graph and any valid assignment. They

show, in particular, that any such metric must be monotonic in

the sense that if P is a sub-path of Q, then P cannot be less de-

sirable thanQ (for the shortest path metric this means that edges

can only be assigned nonnegative costs).

Griffin and Wilfong [11] have shown that statically detecting

solvability for real-world BGP is NP-hard. The translation from

the “high-level” specification language used in that paper into an

instance of the Stable Paths Problem (see Section II) may take

exponential time and space (in the number of nodes). Even so,

in Section V-A we show that the basic question of solvability is

still NP-complete for instances of the Stable Paths Problem.

II. BGP ROUTE SELECTION

In order to motivate the SPP formalism, we briefly review the

route selection process of BGP [13], [18], [19]. BGP employs a

large number of attributes to convey information about each des-

tination. For example, one BGP attribute records the path of all

autonomous systems that the route announcement has traversed.

For these reasons BGP is often referred to as a path vector pro-

tocol. The BGP attributes are used by import policies and export

policies at each router to implement its routing policies. In mod-

eling BGP we make several simplifying assumptions. First, we

ignore all issues relating to internal BGP (iBGP), including the

MED attribute. As a corollary to this, we assume that there is at

most one link between any two autonomous systems. Second,

we ignore address aggregation.
In BGP, route announcements are passed between routers.

These announcements are records that include the following at-
tributes.

nlri : network layer reachability information

(address block for a set of destinations)

next hop : next hop (address of next hop router)

as path : ordered list of autonomous systems traversed

local pref : local preference

c set : set of community tags

The local preference attribute local pref is not passed be-

tween autonomous systems, but is used internally within an au-

tonomous system to assign a local degree of preference.

Each record r is associated with a 3-tuple, rank-tuple(r), de-

fined as

hr:local pref ;

1

j r:as path j

;

1

r:next hop

i:

For a given destination d, the records r with d = r:nlri are

ranked using lexical ordering on rank-tuple(r). The best route

selection procedure for BGP [18] picks routes with the high-

est rank. In other words, if two route records share the same

nlri value, then the record with the highest local preference is

most preferred. If local preference values are equal, then the

record with the shortest as path is preferred. Finally, ties are

broken with preference given to the record with the lowest IP ad-

dress for its next hop value. Note that this ordering is “strict”

in the sense that if two records r
1

; r

2

are ranked equally, then

r

1

:next hop = r

2

:next hop. Route selection based on high-

est rank is deterministic since at any time there is at most one

route record learned from next hop with a given nlri.

A route transformation T is a function on route records,

T (r) = r

0, that operates by deleting, inserting, or modifying

the attribute values of r. If T (r) = hi (the empty record), then

we say that r has been filtered out by T .

Suppose u and w are autonomous systems with a BGP peer-

ing relationship. As a record r moves from w to u it undergoes

three transformations. First, r
1

= export(u w; r) represents

the application of export policies (defined by w) to r. Second,

r

2

= PVT(u w; r

1

) is the BGP-specific path vector trans-

formation that adds w to the as path of r
1

, sets next hop,

and filters out the record if its as path contains u. Finally,

r

3

= import(u w; r

2

) represents the application of import

policies (defined at u) to r
2

. In particular, this is the function that

assigns a local pref value for r
3

. We call the composition of

3

these transformations the peering transformation, pt(u w; r),

defined as

import(u w; PVT(u w; export(u w; r))):

Suppose autonomous system u

0

is originating a destination d by

sending a route record r
0

with r
0

:nlri = d to (some of) its peers.

If u
k

is an autonomous system and P = u

k

u

k�1

� � �u

1

u

0

is

a simple path where each pair of autonomous systems u
i+1

, u
i

are BGP peers, then we define r(P), the route record received

at u
k

from u

0

along path P , to be

pt(u
k

 u

k�1

; pt(u
k�1

 u

k�2

; � � � pt(u
1

 u

0

; r

o

) � � �)):

We say that P is permitted at u
k

when r(P) 6= hi. We can then

define a ranking function, �uk (P), on AS-paths permitted at u
k

as the lexical rank of rank-tuple(r(P)).

III. THE STABLE PATHS PROBLEM (SPP)

The SPP formalism defined below is based on the notion of

permitted paths and ranking functions on these paths. In terms

of BGP, we can think of SPVP as capturing the semantics that

translate the apparent routing policies at autonomous system u

k

into the actual routing policies at u
k

. Note that the actual routing

policies at u
k

are the result of the interaction between routing

policies of many, possibly distant, autonomous systems. The

SPP framework is designed to capture the underlying semantics

of any path vector protocol such as BGP. We seek to study the

safety of routing policies in a manner independent of the details

used to implement those policies.

Let G = (V;E) be a simple, undirected graph where V =

f0; 1; 2; : : : ; ng is the set of nodes and E is the set of edges. For

any node u, peers(u) = fw j fu;wg 2 Eg is the set of peers

for u. We assume that node 0, called the origin, is special in that

it is the destination to which all other nodes attempt to establish

a path.

A path in G is either the empty path, denoted by �, or a se-

quence of nodes, (v
k

v

k�1

: : : v

1

v

0

), k � 0, such that for each

i, k � i > 0, fv
i

; v

i�1

g is in E. Note that if k = 0, then

(v

0

) represents the trivial path consisting of the single node v
0

.

Each non-empty path P = (v

k

v

k�1

: : : v

1

v

0

) has a direction

from its first node v
k

to its last node v
0

. If P and Q are non-

empty paths such that the first node in Q is the same as the last

node in P , then PQ denotes the path formed by the concate-

nation of these paths. We extend this with the convention that

�P = P� = P , for any path P . For example, (4 3 2) (2 1 0)

represents the path (4 3 2 1 0), whereas � (2 1 0) represents the

path (2 1 0). This notation is most commonly used when P is

a path starting with node v and fu; vg is an edge in E. In this

case (u v)P denotes the path that starts at node u, traverses the

edge fu; vg, and then follows path P from node v.

For each v 2 V , Pv denotes the set of permitted paths from

v to the origin (node 0). If P = (v v

k

: : : v

1

0) is in Pv, then

the node v
k

is called the next hop of path P . Let P be the union

of all sets Pv.

For each v 2 V , there is a non-negative, integer-valued rank-

ing function �v, defined over Pv, which represents how node v

ranks its permitted paths. If P
1

; P

2

2 P

v and �v(P
1

) < �

v

(P

2

),

then P

2

is said to be preferred over P
1

. Let � = f�

v

j v 2

V � f0gg.

An instance of the Stable Paths Problem, S = (G; P ; �), is

a graph together with the permitted paths at each node and the

ranking functions for each node. In addition, we assume that

P

0

= f(0)g, and for all v 2 V � f0g:

(empty path is permitted) � 2 P

v,

(empty path is lowest ranked) �

v

(�) = 0, �v(P) > 0 for P 6=

�,

(strictness) If P
1

; P

2

2 P

v, P
1

6= P

2

, and �v(P
1

) = �

v

(P

2

),

then there is a u such that P
1

= (v u)P

0

1

and P

2

= (v u)P

0

2

(paths P
1

and P
2

have the same next-hop),

(simplicity) If path P 2 P

v, then P is a simple path (no re-

peated nodes),
Let S = (G;P ;�) be an instance of the Stable Paths Prob-

lem. A path assignment is a function � that maps each node
u 2 V to a path �(u) 2 Pu. (Note, this means that �(0) = (0).)
We interpret �(u) = � to mean that u is not assigned a path to
the origin. The set of paths choices(�; u) is defined to be

choices(�; u) =

(

f(u v)�(v) j fu; vg 2 Eg \ P

u (u 6= 0)

f(0)g o.w.

This set represents all possible permitted paths at u that can be
formed by extending the paths assigned to the peers of u. Given
a node u, suppose that W is a subset of the permitted paths Pu

such that each path in W has a distinct next hop. Then the best
path in W is defined to be

best(W;u) =

(

P 2W with maximal �u(P) (W 6= ;)

� o.w.

The path assignment � is stable at node u if

�(u) = best(choices(�; u); u):

Note that if � is stable at node u and �(u) = �, then the set of

choices at u must be empty. The path assignment � is stable if

it is stable at each node u. We often write a path assignment as

a vector, (P
1

; P

2

; � � � ; P

n

), where �(u) = P

u

. (We omit P
0

since it is always (0).) It is easy to check that if � is stable, and

�(u) = (u w)P , then �(w) = P . Therefore, any stable path

assignment implicitly defines a tree rooted at the origin. Note,

however, that this is not always a spanning tree.

The Stable Paths Problem S = (G; P ; �) is solvable if there

is a stable path assignment for S. A stable path assignment is

also called a solution for S. If no such assignment exists, then

S is unsolvable.

Figure 1 (a) presents a Stable Paths Problem called SHORT-

EST 1. The ranking function for each non-zero node is depicted

as a vertical list next to the node, with the highest ranked path at

the top going down to the lowest ranked non-empty path at the

bottom. The stable path assignment

((1 0); (2 0); (3 0); (4 3 0))

is illustrated in Figure 1 (b). If we reverse the ranking order of

paths at node 4 we arrive at SHORTEST 2, depicted in Figure 1

(c). The stable path assignment

((1 0); (2 0); (3 0); (4 2 0))

4

(b)

SHORTEST 1 solution

(c)

1 0

1 3 0

2 0

2 1 0

3 0

4 2 0

4 3 0

SHORTEST 2

(a)

4 3 0
4 2 0

3 0

1 0

1 3 0

2 0

2 1 0

SHORTEST 1

(d)

SHORTEST 2 solution

3

2

0

1

4

3

0

1

4

2

3

2

0

1

4

3

2

0

1

4

Fig. 1. Stable Paths Problems with shortest path solutions.

is illustrated in Figure 1 (d). In both cases, the ranking functions

prefer shorter paths to longer paths and the solutions are shortest

path trees. Note that the ranking at node 4 breaks ties between

paths of equal length. This results in one shortest path tree as

the solution for SHORTEST 1, while another shortest path tree as

the solution for SHORTEST 2.

2 0

2 1 01 3 0

1 0

4 3 0
4 2 0

3 0

2 0

2 1 01 3 0

1 0

4 3 0
4 2 0

3 0
3 4 2 0

(c)

NAUGHTY GADGET

2 0

2 1 01 3 0

1 0

3 0

4 2 0

4 3 0

3 4 2 0

(d)

BAD GADGET

(a)

GOOD GADGET

(b)

A stable assignment

3

2

0

1

4

3

2

0

1

4

3

2

0

1

4

3

2

0

1

4

Fig. 2. Stable Paths Problems that are not shortest path problems.

The ranking of paths is not required to prefer shorter paths to

longer paths. For example, Figure 2 (a) presents a Stable Paths

Problem called GOOD GADGET. Note that both nodes 1 and 2

prefer longer paths to shorter paths. The stable path assignment

((1 3 0); (2 0); (3 0); (4 3 0));

illustrated in Figure 2 (b), is not a shortest path tree. This is the

unique solution to this problem.

A modification of GOOD GADGET, called NAUGHTY GAD-

GET, is shown in Figure 2 (c). NAUGHTY GADGET adds one

permitted path (3 4 2 0) for node 3, yet it has the same unique

solution as GOOD GADGET. However, as is explained in Sec-

tion IV, the protocol SPVP can diverge for this problem. Fi-

nally, by reordering the ranking of paths at node 4, we produce

a specification called BAD GADGET, presented in Figure 2 (d).

This specification has no solution and the SPVP protocol will

always diverge.

(b)

One solution

(a)

DISAGREE

2 0

2 1 0

1 0

1 2 0

Another solution

(c)

21

0

2

1

0

21

0

Fig. 3. DISAGREE and its two solutions.

So far, our examples each has had at most one solution. This

is not always the case. The simplest instance, called DISAGREE,

having more than one solution is illustrated in Figure 3 (a). The

stable path assignment

�

1

= ((1 2 0); (2 0));

is depicted in Figure 3 (b). An alternative solution,

�

2

= ((1 0); (2 1 0));

is shown in Figure 3 (c). No other path assignments are stable

for this problem.

Figure 4 (a) describes a slight modification to BAD GADGET.

The path (4 0) is added and made the highest ranked path at

node 4. The unique solution to this problem is illustrated in

Figure 4 (b). Note that if the edge f0; 4g is deleted, then this

system becomes BAD GADGET. In terms of routing, this models

the failure of link f0; 4g, and illustrates the fact that a network

with a stable routing tree can be transformed into one with no

solution with the failure of a single link.

(b)
(a)

2 0

2 1 01 3 0

1 0

3 0
3 4 2 0 4 3 0

4 2 0
4 0

3

2

0

1

4

3

2

0

1

4

Fig. 4. BAD BACKUP

5

IV. A SIMPLE PATH VECTOR PROTOCOL (SPVP)

This section presents a Simple Path Vector Protocol (SPVP)

for solving the Stable Paths Problem in a distributed manner.

SPVP represents an abstract version of the existing BGP proto-

col. This protocol always diverges when a Stable Paths Problem

has no solution. It can also diverge for Stable Path Problems that

are solvable. The protocol SPVP defined below differs from the

simpler model of evaluation presented in [10], [11]. Here we

use a message processing framework which employs a reliable

FIFO queue of messages for communication between peers.

In SPVP, the messages exchanged between peers are simply

paths. When a nodeu adopts a pathP 2 Pu it informs eachw 2

peers(u) by sending path P to w. There are two data structures

at each node u. The path rib(u) is u’s current path to the origin.

For each w 2 peers(u), rib-in(u(w) stores the path sent from

w most recently processed at u. The set of path choices available

at node u is defined to be

choices(u) = f(u w)P 2 P

u

j P = rib-in(u(w)g;

and the best possible path at u is defined to be

best(u) = best(choices(u); u):

This path represents the highest ranked path possible for node

u, given the messages received from its peers.

process spvp(u)

begin

receive P from w �!

begin

rib-in(u(w) := P

if rib(u) 6= best(u) then

begin

rib(u) := best(u)

for each v 2 peers(u) do

begin

send rib(u) to v

end

end

end

end

Fig. 5. The SPVP process at node u.

Figure 5 presents the process spvp(u) that runs at each node

u. The notation and semantics are from [6]. If there is

an unprocessed message from any w 2 peers(u), the guard

receive P from w can be activated causing the message to be

deleted from the incoming communication link and processed

according to the program to the right of the arrow (�!). We

assume that this program is executed in one atomic step and that

the communication channels are reliable and preserve message

order. This protocol ensures that rib-in(u (w) always con-

tains the most recently processed message from peer w and that

rib(u) is always the highest ranked path that u can adopt that is

consistent with these paths.

The network state of the system is the collection of values

rib(u), rib-in(u(w), and the state of all communication links.

It should be clear that any network state implicitly defines the

path assignment �(u) = rib(u). A network state is stable if all

communication links are empty. In Section V-E it is shown that

the path assignment associated with any stable state is always a

stable path assignment, and thus a solution to the Stable Paths

Problem. Therefore, if the Stable Paths Problem has no solution,

then SPVP always diverges.

For example, consider BAD GADGET from Figure 2 (d). Us-

ing SPVP, it is easy to construct a sequence of network states

that are associated with the path assignments of Figure 6. In this

figure, an underlined path indicates that it has changed from the

previous path assignment. Notice that this sequence begins and

ends with the same path assignment and so represents one round

of an oscillation.

step �

0 (1 0) (2 0) (3 4 2 0) (4 2 0)

1 (1 0) (2 1 0) (3 4 2 0) (4 2 0)

2 (1 0) (2 1 0) (3 4 2 0) �

3 (1 0) (2 1 0) (3 0) �

4 (1 0) (2 1 0) (3 0) (4 3 0)

5 (1 3 0) (2 1 0) (3 0) (4 3 0)

6 (1 3 0) (2 0) (3 0) (4 3 0)

7 (1 3 0) (2 0) (3 0) (4 2 0)

8 (1 3 0) (2 0) (3 4 2 0) (4 2 0)

9 (1 0) (2 0) (3 4 2 0) (4 2 0)

Fig. 6. A sequence of path assignments for BAD GADGET.

A Stable Paths Problem is called safe if the protocol SPVP

always converges. Note that SPP solvability does not imply

safety. For example, NAUGHTY GADGET has a solution, but

SPVP evaluation for this system can diverge. Whereas BAD

GADGET is unable to converge, NAUGHTY GADGET can oscil-

late for an arbitrary amount of time before converging to a so-

lution. In other words, NAUGHTY GADGET can produce both

persistent and transient oscillations.

V. A SUFFICENT CONDITION FOR SPP SOLVABILITY,

SAFETY, AND ROBUSTNESS

In this section we analyze the Stable Paths Problem. First,

we show that determining if a solution exists is an NP-complete

problem. We then define dispute wheels and show that the lack

of dispute wheels is a sufficient condition which guarantees that

a Stable Paths Problem has a unique solution. With respect to

the protocol SPVP, we show that this sufficient condition also

implies safety and robustness.

A. Complexity of SPP solvability

We now investigate the computational complexity of deter-

mining if a solution exists for an instance of the Stable Paths

Problem. For a review of complexity theory, see [5].

6

C
C X

3

0

C X

5

0
C.1 C.0 0

C.1 C.2 C.0 0

C.1 C X

7

0

C.1 C X

3

0

C.1 C X

5

0

C.2 C.3 C.0 0

C.3 C.0 0

C.3 C.1 C.0 0

C X

7

0 C.2 C.0 0

X

7

X

3

X

3

X

5

X

5

X

7

0

BAD GADGET(C)

C:0

C:1

C:3

C:2

X

7

_X

5

_X

3

Fig. 7. Example of construction for clause C = X

7

_X

5

_X

3

Theorem V.1: The problem of determining whether an in-

stance of the Stable Paths Problem is solvable is NP-complete.

Proof: We begin by noting that this problem is in NP, since we

only need to guess a path assignment and check that it is indeed

stable. This can clearly be done in time polynomial in the size

of the instance of SPP.

The rest of the proof relies on a reduction from 3-SAT, a well-

known NP-complete problem. An instance of 3-SAT consists of

a set of boolean variables and a formula based on these variables

and their negations where the formula has the form of a conjunc-

tion of terms each of which is a disjunction of three literals (a

literal l is either a variable X or its negation X). The 3-SAT

problem asks if there exists a satisfying assignment for a given

instance.

Suppose we are given an instance I of 3-SAT with variables

X = fX

1

; X

2

; : : : ; X

n

g. We now construct an instance of the

Stable Paths Problem S(I) that is solvable if and only if I has a

satisfying assignment.

(a)

X

i

X

i

X

i

0

0

0

X

i

0

0

X

i

X

i

0

X

i

X

i

0

(b) X
i

is true (c) X
i

is false

Fig. 8. Variable assignment gadget for X
i

.

For each variable X
i

we use the structure of DISAGREE (Fig-

ure 3) to construct a “variable assignment gadget” shown in Fig-

ure 8 (a). The two distinct solutions of this gadget, depicted in

Figure 8 (b) and (c), represent the assignment of X
i

to true and

false, respectively.

Given an arbitrary clause C = l

1

_ l

2

_ l

3

of I , the instance

S(I) contains a node labeled C. For each literal in C there is

an edge from C to the corresponding node of the variable as-

signment gadget for the variable of that literal. The node C has

only three permitted paths, each of length two, corresponding to

the variable assignment that makes the literals true. (Note that

the ranking is not important.) See Figure 7 for an illustration

of this construction for three variables X
3

, X
5

, and X
7

, and for

one clause C = X

7

_X

5

_X

3

. For each clause C, a copy of a

simplified BAD GADGET, called BAD GADGET(C), is attached

as shown in Figure 7. It is clear that S(I) is polynomial in the

size of I .

We now show that I is satisfiable if and only if S(I) has a so-

lution. Suppose that the variable assignment function A : X !

ftrue; falseg satisfies every clause of I . We now define a stable

path assignment �
A

for S(I). First, we define �
A

on variable

assignment gadgets as

�

A

(X

i

) =

(

(X

i

0) if A(X
i

) = true

(X

i

X

i

0) if A(X
i

) = false

and

�

A

(X

i

) =

(

(X

i

0) if A(X
i

) = false

(X

i

X

i

0) if A(X
i

) = true

Suppose C = l

1

_ l

2

_ l

3

is a clause. Since A is a satisfying

assignment, we know that at least one literal of C is true. Let

l

j

be the true literal such that the path (C l

j

0) has the highest

rank at C. Then let �
A

(C) = (C l

j

0). Finally, for this same

C consider BAD GADGET(C). Let �
A

(C:1) = (C:1 C l

j

0),

�

A

(C:2) = (C:2 C:3 C:0 0), �
A

(C:3) = (C:3 C:0 0), and

�

A

(C:0) = (C:0 0). It is easy to check that �
A

is a stable path

assignment.

For the other direction, suppose that � is a stable path as-

signment for S(I). We now construct a variable assignment

A

�

: X ! ftrue; falseg that satisfies I . For each clause C,

it must be the case that �(C:1) = (C:1 C l

j

0), for some literal

l

j

of clause C. If this were not the case, then � cannot be stable

for at least one node in BAD GADGET(C). Since � is stable, we

know that �(C) = (C l

j

0) and that �(l
j

) = (l

j

0). Suppose

that l
j

= X

i

for some i. Then define A
�

(X

i

) = true. Other-

wise, l
j

= X

i

for some i, and we define A
�

(X

i

) = false. If

after considering each clause C there remains some unassigned

variables, simply assign them the value true. The assignment

A

�

is well defined because we cannot have two clauses C and

C

0 such that �(C) = (C l

j

0) and �(C 0

) = (C

0

l

j

0). Such a

� could not be stable at l
j

and l
j

. Since A
�

assigns at least one

7

literal for each clause the value true, we conclude that this is a

satisfying assignment.

B. Dispute Wheels

Given the NP-completeness of the solvability problem for sta-

ble paths, we turn to developing a heuristic procedure. The pro-

cedure attempts to grow a stable path assignment (a routing tree)

in a greedy manner.

Suppose V 0

� V , such that 0 2 V

0. A partial path assign-

ment � for V 0 is a path assignment such that for every u 2 V

0,

every node in �(u) is in V 0. The heuristic procedure constructs

a sequence of subsets of V , f0g = V

0

� V

1

� V

2

: : :, together

with a sequence of partial path assignments �
0

; �

1

; �

2

; : : :,

where each �
i

is a partial path assignment for V
i

. For each �
i

,

define �̂
i

to be the path assignment for V , where �̂
i

(u) = �(u)

for u 2 V

i

, and �̂
i

(u) = � for u 62 V

i

. The partial path assign-

ment �
i

is stable for V
i

if �̂
i

is stable for each u 2 V
i

.

If u 2 V �V
i

andP 2 Pu, then P is said to be consistent with

�

i

if it can be written as P = P

1

(u

1

u

2

)P

2

, where P
1

is a path

in the digraph induced by V � V

i

, u
2

2 V

i

, and P

2

= �(u

2

),

and fu
1

; u

2

g 2 E. Such a P is called a direct path to V
i

if P
1

is

empty. Let D
i

be the set of nodes u 2 V � V

i

that have a direct

path to V

i

. Without loss of generality, each node has a non-

empty permitted path to the origin, and hence if V � V

i

is not

empty, then D
i

is not empty. Let H
i

be the set of nodes u 2 D
i

whose highest ranked path consistent with �

i

is a direct path.

Denote this path as Bu

i

. If H
i

is not empty, let V
i+1

= V

i

[H

i

.

Define the partial path assignment �
i+1

on V
i+1

as

�

i+1

(u) =

(

B

u

i

u 2 H

i

�

i

(u) u 2 V

i

This process continues until for some k either (1) V
k

= V , or (2)

V

k

6= V and H
k

= ;. In the first case, �
k

is clearly a stable path

assignment. In the second case, we are stuck, and the procedure

fails to find a solution.

If we perform this sequence of operations on GOOD GAD-

GET (Figure 2 (a)), then it will arrive at the solution depicted in

Figure 2 (b). However, for both NAUGHTY GADGET and BAD

GADGET, this procedure will get stuck attempting to construct

V

1

(that is H
0

is empty). This is because each node that has a

direct path to V
0

= f0g, (nodes 1, 2, and 3), prefers a path that is

not direct. We now show that getting stuck implies the existence

of a circular set of conflicting rankings between nodes, which

we call a dispute wheel.

Formally, a dispute wheel, � = (

~

U;

~

Q;

~

R), of size k, is a

sequence of nodes ~U = u

0

; u

1

; � � �u

k�1

, and sequences of non-

empty paths ~Q = Q

0

; Q

1

; � � �Q

k�1

and ~

R = R

0

; R

1

; � � �R

k�1

,

such that for each 0 � i � k � 1 we have (1) R
i

is a path

from u

i

to u

i+1

, (2) Q
i

2 P

u

i , (3) R
i

Q

i+1

2 P

u

i , and (4)

�

u

i

(Q

i

) � �

u

i

(R

i

Q

i+1

). (All subscripts are to be interpreted

modulo k.) See Figure 9 for an illustration of a dispute wheel.

Since permitted paths are simple, it follows that the size of any

dispute wheel is at least 2.

Both NAUGHTY GADGET and BAD GADGET of Figure 2 have

this dispute wheel

u

0

Q

0

R

0

u

1

Q

1

R

i

u

i

Q

i+1

u

i+1

Q

i

u

k�1

Q

k�1

R

k�1

Fig. 9. A dispute wheel of size k.

R

2

Q

2

Q

1

R

0

u

2

u

1

Q

0

R

1

u

0

21

0

4

3

In addition, NAUGHTY GADGET has the dispute wheel

u

1

Q

1

u

0

R

0

R

1

Q

0

43 0 2

It may be the case that nodes of G appear multiple times in ~

U

and multiple times in any of the paths of ~Q and ~

R. For example,

consider the SPP

2 0

3 0
3 1 0
3 1 2 0

2 3 0
2 3 1 0

1 2 0
1 2 3 0

1 0

3

2

0

1

This system has the following dispute wheel.

Q

2

Q

1

R

2

R

1

R

0

u

2

u

1

Q

0

u

0

1

2

3

1 2

0

3

Note that nodes 1, 2, and 3 must be duplicated in order to present

this dispute wheel in an “untangled” form.

8

C. No dispute wheel implies solvability

If � is a dispute wheel, the triple resulting from suppress-

ing index i is defined to be �

0

= (

~

U

0

;

~

Q

0

;

~

R

0

) where ~

U

0

and ~

Q

0 result from removing u

i

from ~

U and Q

i

from ~

Q and
~

R

0

= R

0

; � � �R

i�2

; R

0

; R

i+1

; � � � ; R

k�1

, where R0

= R

i�1

R

i

.

A sub-wheel of � is any dispute wheel obtained by a sequence

of such operations. A minimal dispute wheel is one in which for

each 0 � i � k � 1, either R
i

R

i+1

Q

i+2

is not permitted at u
i

,

or �ui(R
i

R

i+1

Q

i+2

) � �

u

i

(R

i

Q

i+1

). Note that any dispute

wheel of size 2 is minimal.

Lemma V.2: Every dispute wheel contains a minimal sub-

wheel.

Proof: Suppose that dispute wheel � is not minimal. Then

for some u
i

in � we have �ui(R
i

Q

i+1

) < �

u

i

(R

i

R

i+1

Q

i+2

).

Create a sub-wheel by suppressing index i+ 1. Repeating this

process must eventually arrive at a minimal sub-wheel.

Theorem V.3: Let S be an instance of the Stable Paths Prob-

lem. If S has no dispute wheel, then S is solvable.

Proof: Suppose that our heuristic procedure gets stuck at step

i. Let u
0

be any node in D

i

and let Q
0

2 P

u

0 be a direct

path. Note that there must be a path P

0

, permitted at u
0

and

consistent with V
i

, which has higher rank than Q
0

. Since P
0

is

consistent with V
i

it has the form P

0

= R

0

(u

1

v

1

)Q

1

where R
0

is a path from u

0

to u

1

in V � V

i

, v
1

2 V

i

, Q
1

is �
i

(v

1

). and

fu

1

; v

1

g 2 E. Note that v
1

2 D

i

, and since H
i

is empty we

can repeat this process with u
1

. If we continue in this manner it

is clear that we will eventually form a dispute wheel.

Note that BAD BACKUP is solvable and yet has a dispute

wheel.

D. No dispute wheel implies a unique solution

In general, an instance of the Stable Paths Problem may have

more than one solution. We show that in this case the problem

has a dispute wheel.

Theorem V.4: If the Stable Paths Problem S has no dispute

wheel, then it has a unique solution.

Proof: Suppose that S has no dispute wheel, and has

two distinct solutions, �

1

= (P

1

; : : : ; P

n�1

) and �

2

=

(Q

1

; : : : ; Q

n�1

). Let T
1

and T

2

be the trees, rooted at node

0, that are defined by the non-empty paths of �
1

and �
2

respec-

tively. Let H be the graph (V;E(T

1

)\E(T

1

)) which is induced

by the intersection of these two trees. Now let T be the com-

ponent of H containing the origin. Thus every edge of T
1

[T

2

entering V (T) is either in E(T

1

) � E(T

2

) or E(T

2

) � E(T

1

).

See Figure 10 for an illustration.

We now construct a dispute wheel. Note that T
1

6= T

2

implies

that V �V (T) is nonempty, and that at least one of the trees has

an edge entering V (T). Without loss of generality, consider any

fu; vg in T

1

where v is in T , and u is not. Note that u must

be in T

2

, otherwise it would have the empty path in �

2

, which

it cannot prefer to the path (u; v)Q

v

. We may choose an edge

fu

0

; v

0

g 2 T

1

, where u
0

62 V (T) and v

0

2 V (T). On the

other hand, u
0

has a path to the origin in T

2

. This path must

be of the form R

0

(u

1

v

1

)Q

1

where (i) u
1

62 V (T); v

1

2 V (T)

and Q
1

is the unique path in T from v

1

to the origin, (ii) R
0

is

a path from u

0

to u

1

in T

2

but entirely contained in the node

set V � V (T) and (iii) R
0

has at least one edge (for otherwise

tree T

v

0

v

1

v

2

v

3

u

0

u

1

u

2

u

3

0

Q

0

R

0

R

1

R

2

R

3

Fig. 10. Illustration for Theorem V.4.

one of T
1

; T

2

would not be stable). We repeat this process at u
1

,

except we now examine a path from u

1

to the origin in the tree

T

1

. Continuing to alternate in this fashion we must eventually

repeat some node, which without loss of generality is u
0

.

To see that this is a dispute wheel, we need only show that for

each i,

�

u

i

((u

i

v

i

)Q

i

) � �

u

i

(R

i

(u

i+1

v

i+1

)Q

i+1

):

Without loss of generality, assume that (u
i

v

i

)Q

i

is in T
1

. If the

inequality did not hold, then we would have

�

u

i

(R

i

(u

i+1

v

i+1

)Q

i+1

) < �

u

i

((u

i

v

i

)Q

i

);

which would mean that T
2

is not stable.

Note that NAUGHTY GADGET has a unique solution and has

a dispute wheel.

E. No dispute wheel implies safety

We now show that the protocol SPVP can never diverge for an

instance of the Stable Paths Problem that has no dispute wheel.

We model (logical) time t with discrete values 0; 1; 2; : : :.

For each node u and each w 2 peers(u), mq(u (w; t) de-

notes the state of the communication link from node w to node

u at time t. This is a FIFO message queue, and the notation

mq(u (w; t)[i] refers to the ith element in the queue. In par-

ticular, mq(u (w; t)[1] is the first element, or the oldest un-

processed message in the communication link. If k is the num-

ber of messages in mq(u (w; t), then mq(u (w; t)[k] de-

notes the last element, or the message most recently sent from

w to u. For each u, rib(u; t) denotes the value of rib(u) at

time t. For each u and each w 2 peers(u), rib-in(u (w; t)

denotes the value of rib-in(u (w) at time t. For ease of

presentation, we define the pipe from node w to u at time t,

pipe(u (w; t), to be the message queue obtained by inserting

rib-in(u (w; t) into mq(u (w; t) before the first position.

In other words, pipe(u (w; t)[1] = rib-in(u (w; t) and

pipe(u(w; t)[i+1] = mq(u(w; t)[i], for 1 � i � k, where

k is the number of messages in mq(u(w; t).

9

The network state at time t, denoted by s(t), is comprised

of all values rib(u; t), rib-in(u (w; t), and mq(u (w; t).

Suppose � = (P

1

; P

2

; � � � ; P

n

) is a path assignment. An initial

state induced by � is the state where each queue mq(u (w)

contains the single message P
w

, each rib-in(u (w) = �, and

each rib(u) = P

u

.

At each state transition from s(t � 1) to s(t), either (1) the

network state remains unchanged, or (2) some node u pro-

cesses a message from some w 2 peers(u). If node u changes

its path in this transition from Pold to Pnew, we say that u

adopted path Pnew at time t. We will encode an arbitrary

run in an activation sequence �, where �(t) = no-op, or

�(t) = recompute(u;w). If �(t) = no-op, then the state re-

mained unchanged in the transition from state s(t � 1) to s(t).

If �(t) = recompute(u;w), then node u processed one mes-

sage from w 2 peers(u). We write s(t� 1)

�(t)

�! s(t) to denote

this transformation. If t
1

< t

2

, the notation s(t

1

)

�

�! s(t

2

)

denotes the composition of one-step transitions s(t
1

)

�(t

1

+1)

�!

s(t

1

+ 1)

�(t

1

+2)

�! s(t

1

+ 2)

�(t

1

+3)

�! � � �

�(t

2

)

�! s(t

2

).

Let s
0

= s(0) be some initial state. An activation sequence

� is fair with respect to s

0

if any message sent from w to u

will eventually be received and processed by u, assuming the

system started in state s
0

. In other words, if s
0

�

�! s(t

1

) and

mq(u (w; t

1

) is not empty, then there is a time t
2

> t

1

such

that s(t
1

)

�

�! s(t

2

) and �(t
2

) = recompute(u;w).

Let S = (G; P ; �) be an instance of the Stable Paths Prob-

lem. If at time t the network state s(t) is such that all message

queues mq(u (v; t) are empty, then we say that the system

has converged at time t, and write S(�; s
0

; t) #, where s
0

is the

initial state (s
0

= s(0)). If the system does not converge for any

time t we say the system diverges, and write S(�; s
0

) ".

We now define the notion of a consistent network state. The

state at time t is rib consistent if for all u, rib(u; t) is the

best path possible, given the values of rib-in(u (w; t), for

w 2 peers(u). We say that pipe(u (w; t) is pipe consis-

tent if pipe(u (w; t)[k] = rib(w; t), where k is the num-

ber of messages in pipe(u (w; t). Note that this implies

that if pipe(u (w; t) contains only one message, then it is

identical to rib(w; t). In particular, if the communication links

mq(u (w; t) are empty, then rib-in(u (w; t) = rib(w; t).

A state s(t) is consistent if it is rib consistent and all pipes are

pipe-consistent.

We now show that consistency is preserved under state tran-

sitions.

Lemma V.5: Let � be an activation sequence. Suppose that

s(t) is a consistent state and s(t)
�(t)

�! s(t+ 1). Then s(t+1) is

a consistent state.

Proof: Obvious.

Theorem V.6 (Correctness) Let s
0

be a consistent state and

� an activation sequence that is fair with respect to s

0

. Sup-

pose that for some time t we have S(�; s

0

; t) #. Let ~

P =

(P

1

; � � � ; P

n

) where rib(i; t) = P

i

. Then ~

P is a solution for

the specification S.

Proof: By repeated application of Lemma V.5 we know that

the state at time t is consistent, and since the system has

converged we know that all communication links are empty.

By pipe-consistency, we know that if i and j are peers, then

rib-in(i(j; t) = rib(j; t) = P

j

. Therefore, if ~P is not a solu-

tion for S, then there is some node i that is not rib-consistent,

which is a contradiction.

Suppose s
0

is a consistent state, � is a fair activation sequence

with respect to s

0

, and that S(�; s
0

) ". The set of converging

nodes, C � V , are those nodes u such that for some time t and

for all t0 � t, we have rib(u; t0) = rib(u; t). The oscillating

nodes, denotedO, is the set of nodes in V not in C.

By the definition of C we can define a time t
c

such that for all

t � t

c

and for all u 2 C, rib(u; t) = rib(u; t
c

). If u 2 C and w is

a peer of u, then after time t
c

no new messages are placed into

pipe(w (u) and so by the fairness of � there is a time t
f

> t

c

such that for all times t > t

f

all such messages from nodes in C

have been flushed from all communication links. In particular,

for all t > t

f

and all u 2 C, pipe(w (u; t) = rib-in(w (

u; t) = rib(u; t) for all peers w of u. For u 2 C, let mu be the

fixed message in rib-in(w (u; t) for all peersw of u and hence

the message in rib(u; t) for all t > t

f

.

For every u 2 O define values(�; s

0

; u) to be the set of

paths that u adopts infinitely often. For every w 2 C de-

fine values(�; s

0

; w) to be the singleton set frib(w; t
c

)g. Let

t

F

be the time after which each u 2 O adopts only paths in

values(�; s

0

; u). For a simple path P = (v

k

v

k�1

: : : v

1

v

0

)

and for any i; j with k � i > j � 0 we denote by P [v

i

; v

j

] the

subpath (v

i

v

i�1

: : : v

j

).

Lemma V.7: For w 2 V , suppose that P 62 values(�; s

0

; w).

Then there is a time t after which there is no path of the form

QP in the network state.

Proof: By definition, there must be a time t after which all

nodes w 2 V adopt only paths P 2 values(�; s

0

; w). Since � a

fair activation sequence, we know that there is some time t0 > t

after which all communication links have been renewed.

Lemma V.8: Suppose P 2 values(�; s

0

; u) for some u 2 O.

If w 6= u is a node in P and w 2 O, then P [w; 0] 2

values(�; s

0

; w). In addition, if v is a node in P and v 2 C,

then P [v; 0] = rib(v; t
c

).

Proof: Let w 6= u be a node in P such that w 2 O. Suppose

that P [w; 0] 62 values(�; s

0

; w). By Lemma V.7, there is a time

t after which there is no path of the form QP in the network

state. Therefore, u cannot adopt this path infinitely often, which

is a contradiction. A similar argument holds for the case where

v is a node in P and v 2 C.

Theorem V.9: If S has no dispute wheel, then S is safe.

Proof: Suppose that S diverges, S(�; s
0

) ". We show that

S contains a dispute wheel. Let O, C, and t

f

be defined as

above. Let t be any time t > t

f

. Let U be the subset of nodes

u 2 O such that there is a path (u w)Q 2 values(�; s

0

; u)t

where w 2 C. That is, each u in U adopts a path that leads

directly to a fixed node. By Lemma V.8, U cannot be empty.

We now construct a dispute wheel. Let u
0

be a node in U .

Let Q
0

be u
0

’s direct path to C, (u
0

w

0

)Q

0

0

. It is easy to check

that Q
0

is unique, and that of all paths in values(�; s

0

; u

0

)t the

path Q

0

is of lowest rank. Let H
0

2 values(�; s

0

; u

0

)t be the

adopted path of highest rank at u
0

. Lemma V.8 tells us that we

can write this path as H
0

= R

0

Q

1

, where R
0

is a path from

u

0

to u

1

of changing nodes, u
1

2 U , and Q

1

= (u

1

w

1

)Q

0

1

for some w
1

2 C. We can now perform the same construction

10

for u
1

. Repeating this process in the obvious way results in a

dispute wheel.

F. No dispute wheel implies robustness

We model the failure of an arbitrary number of links as fol-

lows. Let S = (G; P ; �) be an instance of the Stable Paths

Problem where G = (E; V). Suppose E0

� E. We define

S=E

0 to be the stable paths problem obtained by (1) deleting the

edges E0 from the graph G, (2) removing all permitted paths

that traverse an edge in E0, and (3) amending the ranking func-

tions accordingly. The problem S is fragile if S is solvable but

there exists some E0

� E such that S=E0 is not solvable. The

problem S is robust if S is safe and for each E0

� E the prob-

lem S=E

0 is also safe. The system GOOD GADGET of Figure 2

(a) is robust, while BAD BACKUP of Figure 4 is fragile.

Theorem V.10: Let S be an instance of the Stable Paths Prob-

lem. If S has no dispute wheel, then S is robust.

Proof: Suppose that S has no dispute wheel. From

TheoremV.9, we know that S is safe. Suppose that E0

� E.

If S=E0 is not safe, then by TheoremV.9 there must be a dispute

wheel for S=E0. But any dispute wheel for S=E0 is also a dis-

pute wheel for S, which is a contradiction. Hence, S is robust.

VI. STABLE PATHS AND SHORTEST PATHS

Varadhan et al. [21] first observed that BGP policies could

interact in a way that results in protocol divergence. Their ex-

amples always include autonomous systems that choose longer

paths (in terms of “hop count”) over shorter ones. They stated

“We believe that only shortest path route selection is provably

safe.” The results of the previous sections will be used to ex-

plore this statement. We interpret it to mean that any class of

policies not based on shortest path route selection will not be

provably safe. Notice that implicitly, the conjecture is suggest-

ing that systems whose policies are based on shortest path route

selection will, in fact, be safe.

We begin by formalizing a fairly liberal notion of “shortest

path route selection” that seems appropriate for a protocol such

as BGP. We then show that any instance of the Stable Paths Prob-

lem that is consistent with shortest path route selection will in-

deed be safe. However, we show BGP-like systems can actually

violate “distance metrics” and remain still safe.

As is standard for undirected graphs, we work with an associ-

ated digraph, where each undirected edge e = fa; bg is replaced

by two arcs, e� = (a; b) and e

+

= (b; a). We are also given

costs c(e+) and c(e

�

) associated with traversing the edge e in

the two directions. Thus c induces a cost function on any di-

rected path P in the resulting digraph: c(P) =

P

a2A(P)

c(a).

The cost function c is positive if for each arc a, c(a) > 0.

There are several possible ways to formalize the notion of

“shortest path route selection” for a cost function c. Since a

node u is not required to treat all possible paths to the origin as

permitted paths, we cannot insist that u take the shortest path.

However, it seems reasonable to insist that if u has a choice be-

tween two permitted paths and these paths have different costs,

then u cannot prefer the higher cost path over the lower cost

path. Formally, we say that an instance of the Stable Paths

Problem, S = (G;P ;�), is consistent with the cost function

c if for each w and P

1

; P

2

2 P

w, (1) if �w(P
1

) < �

w

(P

2

),

then c(P

2

) � c(P

1

), and (2) if �

w

(P

1

) = �

w

(P

2

), then

c(P

2

) = c(P

1

).

If a cost function c has negative directed cycles, then S can

be consistent with c and yet not be safe. For example, con-

sider the costs attached to the edges of NAUGHTY GADGET in

Figure 11, where the cost of traversing an edge is the same in

each direction. NAUGHTY GADGET is consistent with this cost

function, but it is not safe. Note that this graph contains a cy-

cle of cost �16. Also, notice that any S will be consistent with

the cost function c that has cost 0 for every arc and so, in par-

ticular, NAUGHTY GADGET will be consistent with such a cost

function. Thus we restrict ourselves to SPVP specifications con-

sistent with cost functions that do not realize any directed cycles

of cost at most 0.

2 0

2 1 01 3 0

1 0

4 3 0
4 2 0

3 0
3 4 2 0

8

8

�4

�4

�4

�4

8

3

2

0

4

1

Fig. 11. NAUGHTY GADGET with negative link costs

Define a cost function c to be coherent if it does not result

in any non-positive directed cycles. Note that any positive cost

function is coherent.

Theorem VI.1: If S is consistent with a coherent cost func-

tion, then S has no dispute wheel.

Proof: Suppose that c is a coherent cost function, S is con-

sistent with c, and S contains a dispute wheel of size k. For

any 0 � i � k � 1 we have �

u

i

(Q

i

) � �

u

i

(R

i

Q

i+1

), and

so c(R

i

Q

i+1

) = c(R

i

) + c(Q

i+1

) � c(Q

i

). Summing these

inequalities we obtain

k�1

X

i=0

c(R

i

) + c(Q

i+1

) �

k�1

X

i=0

c(Q

i

):

After cancellation this implies
P

k�1

i=0

c(R

i

) � 0. Thus the rim

of the dispute wheel is a cycle of cost at most zero, which is a

contradiction.

From TheoremV.9 we can conclude that any S consistent with

a positive cost function is safe. In particular, routing policies

based on hop-count (even with AS-padding) are always safe. In

addition, it can be shown that if all paths are permitted, then this

results in a shortest-path routing tree.

Note that the system INCOHERENT of Figure 12 has no dis-

pute wheel, and hence is safe, yet it is not consistent with any

coherent cost function. To see this, suppose that we are given

arc costs c(1; 2) = A, c(2; 3) = B, c(3; 1) = C, c(1; 0) = D,

c(3; 0) = E and c(4; 3) = F . The cost for any other arc

is arbitrary. Suppose INCOHERENT is consistent with these

costs, then the fact that node 1 prefers path (1 2 3 0) over

path (1 0) means that A + B + E � D. Also the fact that

node 4 prefers path (4 3 1 0) over path (4 3 0) means that

F + C + D � F + E. Adding these inequalities together we

11

obtain A + B + C +D + E + F � D + E + F . By cancel-

lation, we arrive at A + B + C � 0, so there is a nonpositive

cycle (1 2 3 1). That is, INCOHERENT is not consistent with any

coherent cost function.

In summary, the class of Stable Path Problems having no dis-

pute wheels is provably safe, yet it is strictly larger than those

based on shortest paths.

1

0

4

1 2 3 0

1 0

4 3 1 0

4 3 0

3
3 0

3 1 0

2
2 3 0

A B

C

D D

F

Fig. 12. The system INCOHERENT

VII. DISCUSSION AND OPEN PROBLEMS

Is it possible to guarantee that BGP will not diverge? Broadly

speaking, there are three complementary approaches to address-

ing this problem : (1) operational guidelines, (2) static analysis

of routing policies, and (3) dynamic detection. We briefly dis-

cuss each of these techniques.

A set of operational guidelines is a collection of rules that

should be followed by every autonomous system. One use of

the framework presented in the current paper is to prove that a

given collection of rules will indeed guarantee safe BGP poli-

cies. For example, using the results of Section VI it is easy to

see that any set of BGP policies that can be implemented us-

ing route filtering alone will be safe. This includes standard

policies that determine which routes should be imported from

and exported to customers, peers, and upstream providers [15].

A more elaborate set of guidelines, together with correctness

proofs, can be found in [4]. One difficulty with this approach

is that many Internet Service Providers (ISPs) are in fact com-

posed of multiple autonomous systems. Restrictions that make

economic sense when we think of autonomous systems as inde-

pendent ISPs may no longer hold when they are all owned by

the same company. The member autonomous systems of BGP

confederations [20] can be considered as a special case of this

kind of multi-AS service provider.

A solution based on static analysis would rely on programs

to analyze routing policies to verify that they do not contain

policy conflicts that could lead to protocol divergence. This is

essentially the approach advocated in Govindan et al. [9]. How-

ever, there are two practical challenges facing this approach.

First, autonomous systems currently do not widely share their

routing policies, or only publish incomplete specifications. Sec-

ond, even if there were complete knowledge of routing policies,

Griffin and Wilfong [11] have shown that checking for vari-

ous global convergence conditions is either NP-complete or NP-

hard. Therefore, a static approach would most likely require the

development of new heuristic algorithms for detecting this class

of policy conflict.

A dynamic solution to the BGP divergence problem would

be some mechanism to suppress or completely prevent at “run

time” those BGP oscillations that arise from policy conflicts.

Using route flap dampening [22] as a dynamic mechanism to

address this problem has two distinct drawbacks. First, route

flap dampening cannot eliminate BGP protocol oscillations, it

will only make these oscillations run in “slow motion”. Second,

route flap dampening events do not provide network administra-

tors with enough information to identify the source of the route

flapping. In other words, route flapping caused by policy con-

flicts will look the same as route flapping caused by unstable

routers or defective network interfaces. So it seems that any dy-

namic solution would require an extension to the BGP protocol

to carry additional information that would allow policy disputes

to be detected and identified at run time.

Such an extension is presented in [12]. This is done by adding

a dynamically computed attribute to SPVP called the path his-

tory. Protocol oscillations caused by policy conflicts produce

paths whose histories contain cycles. These cycles correspond

to dispute wheels, and identify the policy conflicts and the nodes

systems involved. This protocol can be further extended to au-

tomatically suppress those paths whose histories contain cycles.

This guarantees that the resulting protocol can never diverge.

There are several open problems that need to be addressed.

The computational complexity of deciding safety or robustness

for an SPP specification remains open. Our treatment has ig-

nored the complexities of interior BGP (IBGP), such as route

reflectors and confederations. We have also ignored address ag-

gregation. These issues need to be addressed in a more complete

model of BGP.

In this paper we have studied the stable paths as a compu-

tational problem. However, the stable paths problem could be

studied in the context of a multi-person repeated game where

each node corresponds to a player and each subgame requires

every node i to choose a path from the set of permitted paths at i,

P

i. We do not define this game in its most formal terms (see [3]

for an introduction to game theory), but rather give a slight sim-

plification of the strategy sets for the players. A pure strategy for

node i, is a function 	

i

: N�P

1

�P

2

� : : :�P

n

! P

i where

	

i

(t; p

1

; p

2

; : : : ; p

n

) = (i; j; p), then we must have p
j

= p. The

interpretation is that if at time t, each node j has chosen the path

p

j

, then 	

i

(t; p

1

; p

2

; : : : ; p

n

) determines the path which node i

will adopt at time t+1. A play of the game corresponds to each

node i fixing some pure strategy and then playing each subgame

t = 1; 2; : : : (we may assume that each path stores the empty

path at time 0) and updating the paths stored at each node ac-

cordingly. The payoff for node i after game t is simply the rank

of the path it stores at that time. A (pure) Nash equilibrium

for the game corresponds to a play of the game where for some

t

0

, we have that 	i

(t; p

1

; p

2

; : : : ; p

n

) = p

i

for each node i and

t � t

0

. We note that a mixed strategy for a player corresponds

to some collection S of pure strategies for that player and an as-

signment � : S ! R

+

such that
P

S

�(S) = 1; thus the player

will use the strategyS with probability �(S). Finally, we remark

that BGP defines a unique pure strategy for each player which

it must then use always. Namely, a node must always choose

its best path amongst those available. Thus a player’s strategy is

time independent, and so it can only alter its strategy (and hence

12

any equilibrium adopted) by changing the ranking of its paths.

REFERENCES

[1] D. Bertsekas and R. Gallagher. Data Networks. Prentice Hall, 1992.
[2] K. Bhargavan, D. Obradovic, and C. Gunter. Formal verification of stan-

dards for distance vector routing protocols. UPenn Tech Report, 1999.
[3] K. Binmore. Fun and Games. D.C. Heath and Company, Lexington,

Mass., 1992.
[4] L. Gao and J. Rexford. Stable internet routing without global coordination.

In SIGMETRICS 2000, 2000.
[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco,
CA, 1979.

[6] M. G. Gouda. Elements of Network Protocol Design. John Wiley & Sons,
Inc., 1998.

[7] M.G. Gouda and M. Schneider. Maximizable routing metrics. In Proc.
Sixth International Conference on Network Protocols (ICNP’98, pages
71–78, 1998.

[8] M.G. Gouda and M. Schneider. Stabilization of maximal metric trees.
Workshop on Self-Stabilizing Systems ’99, 1999.

[9] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and W.S.
Lee. An architecture for stable, analyzable internet routing. IEEE Network,
13(1):29–35, 1999.

[10] T. Griffin, F.B. Shepherd, and G. Wilfong. Policy disputes in path-vector
protocols. In Proc. Seventh International Conference on Network Proto-
cols (ICNP’99), pages 21–30, 1999.

[11] T. Griffin and G. Wilfong. An analysis of BGP convergence properties. In
SIGCOMM’99, pages 277 – 288, 1999.

[12] T. Griffin and G. Wilfong. A safe path vector protocol. In INFOCOM2000,
2000.

[13] B. Halabi. Internet Routing Architectures. Cisco Press, 1997.
[14] C. Hendrick. Routing information protocol. RFC 1058, 1988.
[15] G. Huston. ISP Survival Guide. John Wiley & Sons, Inc., 1999.
[16] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing instability. In

SIGCOMM’97, 1997.
[17] C. Labovitz, G. R. Malan, and F. Jahanian. Origins of internet routing

instability. In INFOCOM’99, 1999.
[18] Y. Rekhter and T. Li. A border gateway protocol. RFC 1771 (BGP version

4), 1995.
[19] J. W. Stewart. BGP4, Inter-Domain Routing in The Internet. Addison-

Wesley, 1998.
[20] P. Traina. Autonomous systems confederations for BGP. RFC 1965, 1996.
[21] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations

in inter-domain routing. ISI technical report 96-631, USC/Information
Sciences Institute, 1996.

[22] C. Villamizar, R. Chandra, and R. Govindan. BGP route flap damping.
RFC 2439, 1998.

