
Degree-Constrained Network Flows

Patrick Donovan
School of Computer Science

McGill University
patrick.donovan@mail.mcgill.ca

Adrian Vetta
Department of Mathematics and Statistics, and

School of Computer Science
McGill University

vetta@math.mcgill.ca

Bruce Shepherd
Department of Mathematics and Statistics

McGill University
bruce.shepherd@math.mcgill.ca

Gordon Wilfong
Mathematical and Algorithmic Sciences Center

Bell Laboratories
gtw@research.bell-labs.com

ABSTRACT
A d-furcated flow is a network flow whose support graph has
maximum outdegree d. Take a single-sink multicommodity
flow problem on any network and with any set of routing
demands. Then we show that the existence of feasible frac-
tional flow with node congestion one implies the existence of
a d-furcated flow with congestion at most 1+ 1

d−1
, for d ≥ 2.

This result is tight, and so the congestion gap for d-furcated
flows is bounded and exactly equal to 1 + 1

d−1
. For the case

d = 1 (confluent flows), it is known that the congestion gap
is unbounded, namely Θ(log n). Thus, allowing single-sink
multicommodity network flows to increase their maximum
outdegree from one to two virtually eliminates this previ-
ously observed congestion gap.

As a corollary we obtain a factor 1 + 1
d−1

-approximation
algorithm for the problem of finding a minimum congestion
d-furcated flow; we also prove that this problem is maxSNP-
hard. Using known techniques these results also extend to
degree-constrained unsplittable routing, where each individ-
ual demand must be routed along a unique path.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Approximation algorithm, multicommodity flows, network
flows, confluent flows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

1. INTRODUCTION
We consider the single-sink multicommodity network flow

problem. We have a directed network (graph) G = (V, A)
with sink node t. Each node v ∈ V wants to route rv units
of flow to the sink; this is termed the demand of node v.
Furthermore, each node v ∈ V has a fixed uniform capac-
ity (by scaling we may take this capacity to be 1 as we
allow fractional rv values). Our interest lies in examining
bounded degree or degree-constrained flows, that is, feasible
flows whose support graphs have bounded outdegree1 at ev-
ery node. Since we only examine node congestion problems
we assume our graphs have no parallel (that is, in the same
direction) arcs or loops. Consequently, the maximum out-
degree of any node is less than n, where n is the number of
nodes in the network. We classify such flows as follows. The
class of network flows with outdegree at most d is denoted
by Cd; we call such flows d-furcated. The cases d ∈ {1, 2,∞}
are of particular interest to us2. These flow classes are:

• C∞ (Fractional Flows): flow from a node v to the sink
t may be routed fractionally along any path; in par-
ticular, v may send flow on any number of outgoing
arcs.

• C1 (Confluent Flows): flow from v to t must be routed
on a unique path; in particular, v sends flow on at most
one outgoing arc.

• C2 (Bifurcated Flows): flow may be sent from v on at
most two outgoing arcs.

Bounded degree flows are natural and elegant combina-
torial objects in their own right. Interest in them, how-
ever, is primarily motivated by certain distributed routing
protocols. For example, consider how confluent flows are
produced by the open shortest path first (OSPF) protocol.
This protocol is essentially a distributed implementation of
Dijkstra’s algorithm. Consequently, for a specific network
destination t, it populates each router v’s next hop entry for
t with some neighbour u of v for which there is a shortest
path from v to t through u. In this context “shortest” is de-
termined with respect to some costs on the links (arcs) and,
in intra-domain networks, these costs may be altered by the

1Note that we make no restriction on the indegree of a node.
2Note that by assumption, we have C∞ = Cn−1

network operator to achieve better traffic flow through the
network (see, for example, [8]). Hence, under these con-
straints the collective flow destined for t is routed along a
directed arborescence (rooted at t); that is, we have a con-
fluent flow.

In most intra-domain networks, however, flows with higher
but bounded degrees are allowed. For example, if there is
more than one “shortest path” from v to t, operators may
place two or more next hops for t in the routing table. Traf-
fic to t is then typically split using a round-robin approach
(also cf. [7] where alternatives to the round-robin scheme are
considered). This motivates the present work. We wish to
develop some of the network flow theory underlying the basic
question: what happens if we allow multiple next hops per
destination in our routing tables? In particular, how does
network performance improve as the permissible outdegree
increases? To answer this question we must adopt some per-
formance measure to compare our various traffic flows. A
variety of such measures could be used; we follow the ap-
proach of [3], [2] where the performance measure applied is
worst case congestion of a node. The congestion of a node
is its load divided by its capacity, where the load of a node
v is just the total flow value through v (this includes the
demand of v itself). Hence, in a uniform capacity network
we wish to minimise the maximum load of a node.3

1.1 Our Results and Previous Work
Our goal is to assess the cost, in terms of congestion, of

restricting network flows to only route on a bounded num-
ber of arcs out of any node. Specifically, what is the cost
of routing using the confluent or d-furcated flow constraint?
As in [3], [2], we consider uniform node capacity (equiva-
lently, uncapacitated) networks exclusively. Suppose that G
contains a fractional flow satisfying all the demands in which
no node has load more than 1. One may then ask, is there
a d-furcated flow that routes all the demands and has low
congestion at every node?

Therefore we are interested in the congestion gap, γ(d), of
a flow class Cd, which is the worst ratio, over any network
and any set of demands, of the congestion of an optimal
flow in Cd to the congestion of an optimal flow in C∞. This
question was first considered by Chen, Rajaraman and Sun-
daram [3], who showed there always exists a confluent flow
with congestion O(

√
n). This was subsequently improved by

Chen et al. [2] who proved a congestion bound of O(log n)
and gave an example to show that this result is tight. (More
precisely, they gave a bound of O(log k) where k is the num-
ber of nodes with outgoing arcs to the sink.) Hence the
congestion gap γ(1) between fractional flows and confluent
flows is Θ(log n) in an uncapacitated (i.e., uniform capac-
ity) network. Thus, the gap between flows in C1 and flows
in C∞ is unbounded but, evidently, as the maximum out-
degree of a flow is allowed to increase, the congestion gap
tends to one. However, it was not known whether obtaining
a bounded congestion gap required allowing an unbounded
maximum degree. Perhaps surprisingly, we prove that a
bounded congestion gap can be obtained with bounded out-

3Congestion can also be defined in terms of congestion along
a link. Note that for confluent flows, the maximum load on
an arc in the network must occur on some link into the
destination t. Thus if all link and node capacities are 1,
then the worst case node and link congestion problems are
identical.

degrees. In fact, the congestion gap is all but eliminated if
we allow for bifurcated rather than confluent flows: Given a
fractional flow of congestion one, there is a bifurcated flow
with congestion at most two. Thus, our main result is that
the congestion gap γ(2) between flows in C2 and flows in C∞

is at most two in uncapacitated networks. We also show that
this bound is tight. Moreover, our techniques show the rate
at which the congestion gap is eliminated as d grows; the
congestion gap γ(d) between d-furcated flows and fractional
flows is at most 1 + 1

d−1
.

Our proof is algorithmic and so provides a factor 2 (respec-
tively, factor 1 + 1

d−1
) approximation algorithm for finding

a minimum congestion bifurcated (respectively, d-furcated)
flow in a single-sink multicommodity flow problem. Finally,
we show that this problem is maxSNP-hard.

1.2 Overview of the Algorithm
Before giving a formal description of the algorithm, it

may be useful to outline our basic approach. The algo-
rithm starts with a fractional single-sink multicommodity
flow whose maximum node load is 1. Our objective is to
transform this into a d-furcated flow with maximum load
at most 1 + 1

d−1
. We proceed by applying a number of

operations that gradually bring the flow into a more man-
ageable form. Some of these operations are well-known. For
instance, we may reduce the flow on any directed cycle un-
til the support of our flow is acyclic. Second, if there is a
node v for which flow only leaves v on a single arc (u, v),
then we contract this arc. A third operation applied is
one used in [4] and coined a sawtooth cycle augmentation
in [2]. A (general) sawtooth cycle consists of any cycle (in
the underlying undirected support graph) that has the form
{(u0, v0), P0, (u1, v1), P1, (u2, v2), P2, . . . , (ur, vr), Pr}. Here
each Pi consists of a directed path from ui+1 to vi (subscript
arithmetic modulo r + 1). Given such a cycle, observe that
we may increase the flow on each (ui, vi) by some ε > 0,
and decrease the flow on each Pi by ε, without increasing
the load at any node. In [4, 2], such cycles are considered
at the “frontier” of the graph, that is, the nodes vi are all
neighbours of the sink node t. Here we consider sawtooth
cycles that may bounce around throughout the graph. One
contribution of the paper is a structural result that shows if
there is no such sawtooth, then the directed support graph
has a very nice structure: the graph consists of a collection
of induced trees with the property that each vertex is in at
most two trees (see Theorem 3.4).

We defer a precise description but remark that with this
structure, the support resembles a “layered graph”. A sketch
of the final stage of the algorithm is then as follows. Given
our layered graph, we define the layers as follows: L0 = {t}
and for each i ≥ 0, Li+1 = {u 6∈ ∪j≤iLj : ∃ (u, v) ∈ A, v ∈
Li}. Here the graph induced by adjacent layers Li ∪Li+1 is
a forest corresponding to the aforementioned induced trees.
Moreover, each node in Li+1 has outdegree at least two.
This allows us to process our flow greedily from “top to
bottom”. That is, we first adjust the flow out of Lmax, then
out of Lmax−1, etc. At each stage we also consider the nodes
in level Li+1 greedily by picking the most remote nodes in
the current forest, that is, the nodes which are adjacent to
at least one leaf in the forest. At a suitably chosen node, we
show how to redirect its flow without causing the congestion
at any node in the next layer, Li, to exceed 1 + 1

d−1
.

2. THE ALGORITHM:
PHASE I - FLOW SIMPLIFICATION

We now describe our approach in detail. We may remove
t and call its set of in-neighbours Γ−({t}) = {t1, t2, . . . , tk}
the sink nodes. The goal of each node is then to route its
demand to any combination of the sinks. We begin with a
fractional flow f in G satisfying all the demands and having
maximum node load 1. Clearly, we may assume that the
(support of the) flow is acyclic; that is, the set of arcs with
non-zero flow induce an acyclic graph. Our goal is to con-
vert f into a d-furcated flow f ′ with node congestion at most
1+ 1

d−1
. To achieve this we apply a two-phase algorithm. In

the first phase we perform a combination of operations that
simplify the structure of flow. Given this simplified struc-
ture, in the second phase, we redirect parts of the routing
to obtain a d-furcated flow.

Given the initial fractional flow f , we begin by applying
the following two operations.

• Contractions. If v is a node with outdegree 1 we
contract the arc (v, u), where u is the out-neighbour
of v. The demands of u and v are assigned to the new
contracted node. This gives a new flow whose support
contains one less node than the original flow.

• Breaking Sawtooth Cycles. A sawtooth cycle is a
collection

{(u0, v0), P0, (u1, v1), P1, (u2, v2), P2, . . . , (ur, vr), Pr}
where (ui, vi) is an arc and Pi is a directed path from
ui+1 to vi (subscripts modulo r + 1). Note that re-
versing the arcs in every Pi would produce a directed
cycle. (Note also that r = 0 is allowed, and since we
assume G has no parallel arcs, P0 would have length
at least 2 in this case.) Now we may “augment” along
such a cycle by adding ε flow to each arc (ui, vi) and
subtracting ε flow from every arc in each Pi. This gives
a new flow that still satisfies the capacity constraints
of every node on the cycle. Therefore, we eliminate
or break this cycle by choosing ε to be the minimum
flow on one of the arcs in any of the Pi; this gives a
new flow whose support contains one less arc than the
original flow.

Note that performing a contraction operation may pro-
duce new sawtooth cycles. It follows that an arc of the form
(ui, vi) may, in fact, correspond to a path in the original net-
work whose internal nodes have outdegree one (and, hence,
have been contracted into their out-neighbour). Observe
that, in this case, load on these nodes may actually increase
when we eliminate the sawtooth cycle. However, the flow
still obeys the capacity constraints because these internal
nodes have less flow than the end node of the path vi and
that node is not overloaded after augmenting a sawtooth
cycle.

Eliminating a sawtooth cycle may also reduce the outde-
gree of a node to one causing more contractions. Thus we
continue to perform either operation until no such opera-
tions are possible. Clearly, we perform only a polynomial
number of operations as we either reduce the number of
nodes or the number of arcs by one in each step.

Thus at the end of the first phase of the algorithm we
obtain a fractional flow f which contains no sawtooth cycles
and no nodes with outdegree 1. In order to proceed further,

the key is to understand the structure of graphs that do
not contain sawtooth cycles. Accordingly, before presenting
the second phase of the algorithm, we next obtain a char-
acterisation of graphs without sawtooth cycles. We remark
that this characterisation gives an efficient way to detect
sawtooth cycles; consequently, Phase I of the algorithm can
easily be implemented in polynomial time.

3. SAWTOOTH CYCLES AND ACYCLIC
DIGON-TREE REPRESENTATIONS

We now examine the structure of the flow obtained at the
end of Phase I.

3.1 An Auxiliary Digraph
To commence we first give a simple characterisation of

when a directed graph G contains a sawtooth cycle using an
auxiliary digraph D(G) (or simply D if the context is clear).
The auxiliary digraph D is bipartite with (node) bipartition
classes 	 and ⊕; for each node v ∈ G, we have two nodes
v− ∈ 	 and v+ ∈ ⊕ in D. The auxiliary graph contains
three types of arc (see Figure 1).

1. For each node v ∈ G, there is an arc from v− to v+ in
D; we call this a node arc.

2. For each arc (u, v) in G, we have an arc from u− to v+

in D; we call this a real arc.

3. For each arc (u, v) in G, we have an arc from v+ to u−

in D; we call this a complementary arc.

v+
v−

u−

Figure 1: The auxiliary digraph.

Therefore D consists of a set of digons4 (formed by real and
complementary arcs) plus a collection of node arcs. Whether
or not G contains a sawtooth cycle is then simply determined
by the maximum length of a cycle in the auxiliary graph.

4A digon is a pair of arcs that form a simple directed cycle
of length 2.

Theorem 3.1. G contains a sawtooth cycle if and only if
the auxiliary graph D contains a (simple) cycle of length at
least three (and hence at least four).

Proof. Take a cycle C in the auxiliary graph D that is
not a digon (2-cycle). Since D is bipartite, this cycle has
the form C = {v−

1 , v+
2 , v−

3 , v+
4 , . . . , v−

2s−1, v
+
2s, v

−
1 }, where the

vi’s represent nodes in the original network G. Note that
we have v2i−1 = v2i in the cases where a node arc for vi is
used. Observe that by construction:
(i) a node arc in C must be followed by a complementary
arc.
(ii) a real arc in C must be followed by a complementary
arc.
(iii) a complementary arc in C may be followed either by a
real arc or by a node arc.
It follows that C can be partitioned into blocks that consist
of a real arc followed by an odd length path which has al-
ternating complementary arcs and node arcs. Now observe
that these odd length alternating paths correspond to the
complements of real paths in G. Therefore C must contain
at least one real arc a otherwise it consists just of the odd
length alternating path contradicting the bipartiteness of D.
Since C is not a digon in D, the odd length alternating path
does not consist simply of the complement of a. Thus, C
identifies a sawtooth cycle in G. Similarly, a sawtooth cycle
in G corresponds to a cycle of length at least 4 in D.

Next we show how to determine whether any digraph has
a cycle of length at least 3. This leads to a characterisation
for the existence of sawtooth cycles in terms of induced trees
in the graph; this, in turn, is used to orchestrate the second
phase of the algorithm.

3.2 Digon-Tree Representations
First we define the concept of a digon-tree representation.

Suppose D = (V, A) is a directed graph such that the un-
derlying graph (edge-)induced by the digons of D forms a
forest. Each component of this forest is called a digon-tree.
Then we say that D has a digon-tree representation D where
D is the digraph obtained by contracting (and then delet-
ing) the digon edges of D. If D is acyclic, then we say that
D has an acyclic digon-tree representation. The nodes of D
are called digon-tree nodes, and a node which is not incident
to a digon in D, forms a singleton digon-tree node in D.

Digon-tree representations characterise when there are no
circuits of length greater than 2, i.e., when every circuit
in a digraph contains a digon. These representations are
used in the second phase to guide how flow is redirected;
in particular, we use them to determine the order in which
nodes have their outgoing flow redirected. Note that if every
circuit contains a digon, then the graph contains no loops
or cycles of length at least three. The following appears in
[9].

Theorem 3.2. Let D be a digraph without loops. Then
D has no cycle of length at least three if and only if it has
an acyclic digon-tree representation.

Proof. (⇒) Suppose D contains no loops or cycles of
length at least three. If the underlying graph induced by
the digons in D contains a cycle then clearly we have a
cycle of length at least three, a contradiction. So the digons
induce a forest F . Thus, D has a digon-tree representation
D.

Now assume that D contains a loop a at digon-tree node
T . The arc a cannot correspond to a loop in D, or by
definition of D to an arc in a digon of D. Thus it corresponds
to an arc (u, v) in D, where u and v are non-adjacent nodes
in T . Then, clearly, adding (u, v) to the path from v to u in
T gives a cycle of length at least 3 in D.

Suppose D contains a simple cycle C = {T1, T2, . . . , Tr, T1}
where r ≥ 2 and the Ti’s are digon-tree nodes. Then C
easily extends to a cycle C in D by following the appropriate
directed path within each Ti. This cycle C has length at
least 3. If not, then r = 2 and there must be a digon in D
between T1 and T2. But this implies that T1 and T2 belong
to the same component of the graph induced by digon edges,
a contradiction.
(⇐) Let D be an acyclic digon-tree representation of D.
Suppose now that D contains a cycle C of length at least 3.
If every node of C is contained in the same digon-tree node
T of D then some arc in C, say a, is not part of any digon
in T . It follows that a is a loop at node T ; hence D is not
acyclic. So C visits nodes in at least two digon-tree nodes,
say in the order {T1, T2, . . . , Tr, T1}. Thus we have a circuit
in D, and so, again, the digon-tree representation cannot be
acyclic.

Corollary 3.3. G contains no sawtooth cycles if and
only if its auxiliary graph D has an acyclic digon-tree rep-
resentation D.

Proof. By Theorem 3.1, G contains no sawtooth cycles
if and only if every cycle in D is a digon. By Theorem
3.2, this arises if and only if D has an acyclic digon-tree
representation.

Note that the proof of Theorem 3.2 gives a polynomial
time method to find acyclic digon-tree representations and
sawtooth cycles.

3.3 Induced Trees
We now investigate what acyclic digon-tree representa-

tions tell us about the structure of the support for the cur-
rent flow f .

Theorem 3.4. Let G contain no sawtooth cycles. Then
G is the union of edges in a set T of node-induced trees in
G such that any node v is in at most two of the trees and
moreover
(i) All outgoing arcs from v are contained in the same tree.
(ii) All incoming arcs at v are contained in the same tree.

Proof. Given a graph G with no sawtooth cycles, take
the auxiliary graph D of Section 3.2. By Corollary 3.3, we
know that D has an acyclic digon-tree representation D.

Each digon in D corresponds to an arc in G. So each
digon-tree corresponds to an underlying tree (not necessarily
induced) in G. For any node v ∈ G, the nodes v− and v+

are contained in different digon-trees in D. If not, we would
have a self loop at the digon-tree node of D containing v−

and v+. Thus each node indeed lies in at most two trees
corresponding to these two digon-tree nodes. Let us now see
that each such digon-tree T1 say actually gives an induced
subtree T in G. Suppose to the contrary that there is a
pair of nodes u, v ∈ V (T) such that there is an arc (u, v) in
A(G)−A(T). Note that the digon in D between u− and v+

does not lie in T1 by assumption, and hence u− cannot lie
in T1. By the same reasoning v+ could not lie in T1. Hence

T1 contains u+, v− and u− and v+ are both in some other
digon-tree T2 6= T1. But then the two node arcs u−u+ and
v−v+ form a cycle in D between the nodes representing T1

and T2 contradicting the fact that D is acyclic.
Take a node v with outdegree at least one in G. To see

(i), simply note that if (v, w) is an arc in G, then v− and
w+ are in the same digon-tree node. This implies that all
the outgoing arcs from v are contained in the same induced
tree. We obtain (ii) in a similar fashion.

We have from Theorem 3.4, we immediately have

Corollary 3.5. For each sink node t1, t2, . . . , tk in G we
have that t−i is in a singleton digon-tree node. For each
source node (zero indegree) s1, s2, . . . , sl in G we have that
s+

i is in a singleton digon-tree node.

In particular, take a non-singleton digon-tree node T ∈ D.
It contains a set of nodes X ⊆ 	 and a set of nodes Y ⊆ ⊕.
By Theorem 3.4, we note the following

Observation 3.6. The node sets X and Y correspond re-
spectively to disjoint nodes sets X ′, Y ′ in G.

Observation 3.7. The out-neighbourhood of X ′ in G, namely
Γ+

G(X ′), is exactly Y ′.

Observation 3.8. The in-neighbourhood of Y ′ in G, namely
Γ−

G(Y ′), is exactly X ′.

The structure of the digon-trees is important to us in apply-
ing the second phase, where they are used to determine the
order in which nodes are processed by the algorithm.

4. THE ALGORITHM:
PHASE II - FLOW D-FURCATION

The second phase starts from the graph G and processes it
based on the digon-tree representation of its auxiliary graph.
This is done in rounds. Each round is identified with a digon-
tree node T ∗ in the associated auxiliary digraph D. Within
each round, we make steps as we process the source nodes
s of G (that is, the remaining part of G that we are still
processing) that lie in this digon-tree one by one. Processing
s means that we determine how to redirect its flow to at
most d of its out-neighbours, after which we delete s from
the graph.

Note that in Phase II, we keep track of the old flow values
f(u, v) but we also have to add some new flow whenever we
redirect our flow. We refer to the total flow at a node v
to be the sum of the old flow f(v) =

P

(u,v)∈G f(u, v) plus

whatever new (shunted) flow has found its way to v. Our
goal is to bound this total flow at each node. We now give
the details of how we pick our nodes to process, and how to
redirect flow.

We process the digon-tree nodes in the reverse of the
acyclic ordering defined in Section 3.2. That is, at each
step we pick a new digon-tree node T ∗ such that there are
no arcs leaving T ∗ in D. Note that if s is some source node
in G, then by Corollary 3.5, s+ would be a singleton-digon-
tree node with a single arc entering it. We assume that such
singleton nodes are always removed first. If this is the case,
then the next digon-tree node T ∗ in the acyclic order is not
be a singleton node, and since it has no arcs leaving it, its 	
nodes correspond to sources in the current subgraph of G.
This is summarized as:

Lemma 4.1. If G still contains some arcs, then in the
auxiliary digraph D, there is a non-singleton digon-tree node
T ∗ whose set of 	 nodes corresponds to a subset of sources
in G.

We search for s, the next node to be processed, amongst
the nodes in the digon-tree node T ∗ specified by Lemma 4.1.

Lemma 4.2. Let T be a tree with bipartition classes X
and Y such that each node of X has degree at least 2. Then
T contains a node s ∈ X with at most one non-leaf neighbour
in T .

Proof. Let YI ⊆ Y be the set of non-leaf nodes in Y .
Now suppose every node in X has at least two neighbours
in YI . Clearly, each node b ∈ YI has all its neighbours in
X; there are at least two such neighbours as b is a non-leaf.
Therefore, the nodes X ∪ YI induce a bipartite graph with
minimum degree 2. It follows that T contains a cycle, a
contradiction.

Let T ∗ be our next non-singleton digon tree node. We
may apply Lemma 4.2 to its underlying undirected graph;
otherwise there is a node in G with outdegree one and we
would have performed a contraction. Ergo, there is a source
node s ∈ G for which s− has at most one non-leaf neighbour
in T ∗. We process this node in our next step. The existence
of such a source node is the key for our approach.

We now complete the description by describing how flow
is redirected. We denote by U the original maximum load
on any node. Our goal is to show that we can create a d-
furcated flow by processing nodes (in the order described
above) such that for each node v, its total load is at most
f(v)+ 1

d−1
U . We prove this inductively, with the additional

constraint that at each stage any non-source node has load
still equal to f(v), its original load. This is because we have
yet to redirect any new flow to such nodes. Note that by
Observation 3.8, at the end of any round of Phase II, the
plus nodes in T ∗ now correspond to sources in the remaining
graph G. Phase II terminates when G consists only of the
sink nodes {t1, t2, . . . , tk} at which point all the nodes will
be overloaded by at most U .

Theorem 4.3. There is a d-furcated flow such that each
node v has load at most f(v)+ 1

d−1
U . In particular, there is

a d-furcated flow with node congestion at most (1 + 1
d−1

)U .

Proof. Consider s− ∈ T ∗. By induction, s is currently
overloaded by at most 1

d−1
U . Now all of the neighbours of

s− in T ∗ bar at most one, are leaves. Let the out-neighbours
of s in T ∗ (and hence the remaining part of G by Observation
3.7) be u1, u2, . . . , ur. Letting u1, u2, . . . , ur−1 be leaves in
the digon-tree node, we then have two cases.

(i) r ≤ d: Keep the flows f(s, u1), f(s, u2), . . . , f(s, ur)
the same, but move the (possibly) additional 1

d−1
U load

from s to u1, say. Since u1 is a leaf, by Observation 3.8, it
becomes a source after the removal of s with load at most
f(u1) + 1

d−1
U .

(ii) r ≥ d + 1: so u1, u2, . . . , ud are leaves. Clearly
X

j>d

f(s, uj) ≤ f(s) ≤ U

We remove the arcs {(s, uj) : j > d} and split this flow
equally on the arcs (s, u1), . . . , (s, ud). In addition, since

s is a source it may have an additional bundle of demand
of size 1

d−1
U . This bundle is also split equally on the arcs

(s, u1), . . . , (s, ud). Thus the total load at u1 (resp. u2, . . . , ud)
increases by at most

1

d

0

@

X

j>d

f(s, uj) +
1

d − 1
U

1

A ≤ 1

d
(f(s) +

1

d − 1
U)

≤ 1

d

„

(1 +
1

d − 1
)U

«

=
1

d − 1
U

Since u1, . . . , ud are leaves, by Observation 3.8, they all be-
come sources after the removal of s. The result now fol-
lows.

Since we have assumed that U = 1, we see that if G has
a fractional flow with maximum load one then it has a d-
furcated flow with maximum load 1 + 1

d−1
.

5. A MATCHING LOWER BOUND
We now present an example to show that this upper bound

on the congestion gap is tight.

Theorem 5.1. For all ε > 0 there is a network having
a flow with maximum node load 1 but where all d-furcated
flows have node congestion at least 1 + 1

d−1
− ε.

Proof. We construct a family of networks N(k, m) with
optimal fractional flows of maximum load one. However, for
all ε > 0, there is a member of this family for which any d-
furcated flow must have congestion at least 1+ 1

d−1
−ε. The

network N(k, m) is just a k-ary tree of depth m; thus, there
are ki nodes at level i. The root node has demand one and
all other nodes have demand (k − 1)/k. This is illustrated
in Figure 2.

has demand 1

k

level 1 has demand (k−1)/k

root

k

k

k k

k

level 0

level 2

level 3

Figure 2: Lower bound construction.

Clearly, the flow where each node sends 1/k flow to each
of its neighbours at the next level has maximum load equal
to 1. We show by induction on level number that at each
level i in N(k, m), a d-furcated flow has some node with
congestion at least Ci(k) where

Ci(k) =
1

di
+

1

d − 1

k − 1

k

„

d − 1

di−1

«

This is true for level i = 1 since some node has congestion
at least

1

d
+

k − 1

k
= C1(k)

Now suppose there is a node vi at level i with load at least
Ci(k). Then some neighbour vi+1 at level i + 1 receives at
least a 1/d fraction of this in the d-furcated flow. Thus the
congestion C at vi+1 is at least Ci(k)/d + (k − 1)/k. That
is,

C ≥ 1

d

„

1

di
+

1

d − 1

k − 1

k

„

d − 1

di−1

««

+
(k − 1)

k

=
1

di+1
+

k − 1

k

„

1 +
1

d

„

d

d − 1
− 1

(d − 1)di−1

««

=
1

di+1
+

k − 1

k

„

1 +
1

d − 1
− 1

(d − 1)di

«

=
1

di+1
+

1

d − 1

k − 1

k

„

d − 1

di

«

= Ci+1(k)

Thus the congestion of N(k, m) is at least Cm(k) and for
every ε > 0, clearly there are sufficiently large values of m
and k so that Cm(k) ≥ 1 + 1

d−1
− ε.

6. A HARDNESS RESULT
The proof of our congestion bound gives a polynomial

time algorithm to convert a fractional flow into a d-furcated
flow with congestion at most 1 + 1

d−1
. For example, we

have a factor 2-approximation algorithm for the problem
of finding a minimum congestion bifurcated flow, denoted
bifurcated-flow. In this section we show that this prob-
lem is maxSNP-hard. (Similarly, it may be shown that the
problem of finding a minimum congestion d-furcated flow is
maxSNP-hard for fixed d.)

To prove this we give a reduction from 3sat. Moreover,
by applying standard transformations, we may assume that
each literal appears in exactly three clauses and that each
clause contains exactly three literals. We take such a 3sat

instance and reduce it to a bifurcated flow problem as fol-
lows.

We have a gadget for each variable xi. This gadget consists
of just four nodes. There is a selector node si with outgoing
arcs to two literal nodes, namely xi and x̄i, and to a dummy
(variable) sink di. Our construction ensures that si must
send flow to di in any low congestion solution. Therefore,
in a bifurcated flow, the other outgoing arc from si can be
viewed as a truth assignment for the variable xi. Specifically,
if si sends flow to xi then xi is set to be true; if si sends
flow to x̄i then xi is set to be false.

In addition, xi will be the root of a binary tree with three
leaves. Each leaf is connected to a clause sink Cj where Cj

is one of the three clauses containing the literal x̄i. The leaf
is also connected to its own dummy sink. Similarly, x̄i is
the root of a binary tree whose leaves are each connected to
a clause that contains the literal xi, as well as to a dummy
sink. This construction is illustrated in Figure 3. For mo-
tivation, sending flow through a tree results in setting the
corresponding literal to true. If all three binary trees that
a clause sink is connected to are true, then the clause itself
would not be satisfied (as it connects to trees rooted at the
negations of the literals it contains).

jC

s i

xi xiDemand: 2.5 + + 2 αβ Demand: 2.5 + + 2 αβDemand: 2.5 − + 2β α

α
"Dummy sinks."
Demand: 1 +

"Tree nodes."
αDemand: 1.5 +

"Clause sinks"
Demand: 0

tsx and x)
(From the trees of

Demand: 1

i

C = x v x v xj i s t

d

Figure 3: Hardness Gadgets.

It remains to specify the demand of each node. For the
variable gadget: each selector node has demand 1, each lit-
eral node has demand 2.5+β +2α, and the dummy variable
sink di has demand 2.5 − β + 2α. Each node in the binary
tree associated with a literal has demand 1.5 + α, the other
dummy sinks have demand 1 + α. Finally, each clause sink
has demand 0.

Theorem 6.1. bifurcated-flow is maxSNP-hard.

Proof. First we show that there is a bifurcated flow of
congestion 3 + 2α if there is a satisfying assignment. If xi is
true in this assignment, then send 0.5−β units of flow from
si to xi; in this case, we say that the binary tree for xi is
selected. Otherwise send 0.5− β units to x̄i and say that its
binary tree is selected. In either case send 0.5 + β units to
di. Thus the loads of di and the root of the selected tree are
both 3+2α. The load of the root of the non-selected tree is
2.5 + β + 2α.

Now if every node in a selected tree splits its load evenly,
then each node in the tree also has congestion 3+2α. From
the variable-clause leafs we may then send 2 + α units to
their dummy sinks and 1 + α to the clause sink. The total
demand in a non-selected tree is 8 1

2
+ β + 6α. This can be

directed so that each leaf has load 2 5
6
+ 1

3
β+2α = 3+α if we

set α = 1
6
(1− 2β). These leafs can then send 2 + α units to

their dummy sinks and 1 to the clause sink. Since we have
a satisfying assignment, any clause sink receives flow from
an unselected tree (recall that a tree rooted at a literal xi

is connected to clauses containing its negation). Therefore
the congestion at a clause sink is at most 3 + 2α.

We now show that any bifurcated flow f with congestion
3 + 2α + δ, for a suitable 0 < δ < β, must correspond
to a satisfying assignment. Observe that f must send flow
to each dummy variable sink. Otherwise either xi or x̄i has
congestion 3+2α+β > 3+2α+δ. Moreover, we may assume
that f sends 1

2
+β+δ flow to di as this does not increase the

congestion of the flow. So such a flow corresponds to a truth
assignment. We need to show that this must be a satisfying
assignment. Suppose not, then there is some unsatisfied
clause Cj . The clause sink Cj has congestion at most 3 +
2α+δ, so one of its incoming arcs (u, Cj) must contribute at
most 1+ 2

3
α+ 1

3
δ. As u is a leaf in one of the binary trees, it

may also send 2 + α + δ flow to its dummy node. Moreover,
since Cj is not satisfied, we know that u is in a selected tree.
Therefore, one of other two leaves in that tree has load at
least 1

2
(
`

9 + 6α − δ) − (1 + 2
3
α + 1

3
δ) − (2 + α + δ)

´

= 3 +
13
6

α − 7
6
δ. This implies that 1

6
α ≤ 13

6
δ, that is δ ≥ 1

13
α =

1
78

(1 − 2β). Setting β = 1
80

, we see that we cannot get a
better approximation guarantee for bifurcated-flow than
1 + 1

266
≈ 1.0038 unless P=NP.

7. UNSPLITTABLE FLOWS
Suppose we make an additional restriction on our net-

work flows. What if, in addition to flows being d-furcated,
individual demands must be routed unsplittably? That is,
each demand rv must be routed along a single path. We let
dmax be the maximum demand amongst our various com-
modities. (Note that for unsplittable flow, one may have
multiple demands associated with a node V ; for our discus-
sion, we may amalgamate them into one large demand at
v without affecting the results.) Combining our approach
with the unsplittable flow techniques of Dinitz et al. [4] we
obtain the following result.

Theorem 7.1. Given a fractional flow of with maximum
node load U , there is a d-furcated, unsplittable flow with con-
gestion at most (1 + 1

d−1
)U + dmax.

Proof. To see this, first find a d-furcated flow with con-
gestion (1 + 1

d−1
) as described. Then run the unsplittable

flow algorithm [4] on this d-furcated flow. The resultant
congestion increases by at most the maximum demand.

Incorporating the approach of Dinitz et al. gives us ap-
proximation algorithms for other objective functions. For
instance, solving the maximum routable demand problem
where we wish to unsplittably route a subset of the de-
mands, of maximum total weight, using a d-furcated flow
of congestion U . One can also obtain results for the prob-
lem of routing all demands in a minimum number of rounds.
We are required to route all demands unsplittably (obeying
some maximum node load constraint) using d-furcated flows.
We defer the details to the full version of the paper.

8. CONCLUSION
We have shown that one may produce a d-furcated flow

from a fractional flow without increasing the maximum node
load by more than a factor of 1+ 1

d−1
; we have also seen this

is tight. Many interesting problems remain. What about
multicommodity flow problems with multiple sinks? What
happens in networks with non-uniform capacities or costs?

It is natural to ask about a special class of d-furcated
flows where each node must split its flow equally along its
outgoing arcs (as discussed, such flows are also of practical
interest). For example, in networks with maximum outde-
gree two we call such flows halfluent. One may show that
the congestion gap between bifurcated flows and halfluent
flows may be as large as 2. It may be possible to extend the
techniques developed here to obtain an O(1) congestion gap
for halfluent flows.

Acknowledgments. We are grateful to R. Kleinberg for
a stimulating conversation. P. Donovan was supported in
part by NSERC grant 28833 − 04. B. Shepherd and G.
Wilfong have been partly supported by basic research grant

number N000140610396 from the ONR to Bell Laboratories.
A. Vetta is supported in part by NSERC grant 28833 − 04
and FQRNT grant NC−98649.

9. REFERENCES
[1] R. Ahuja, T. Magnanti and J. Orlin, Network Flows:

Theory, Algorithms, and Applications, Prentice-Hall,
1993.

[2] J. Chen, R. Kleinberg, L. Lovasz, R. Rajaraman, R.
Sundaram and A. Vetta, “(Almost) tight bounds and
existence theorems for confluent flows”, Proceedings of
the 36th ACM Symposium on Theory of Computing
(STOC), pp529-538, 2004.

[3] J. Chen, R. Rajaraman, and R. Sundaram, “Meet and
merge: approximation algorithms for confluent flow”,
Proceedings of the 35th ACM Symposium on Theory of
Computing (STOC), pp373-382, 2003.

[4] Y. Dinitz, N. Garg and M. Goemans, “On the
single-source unsplittable flow problem”,
Combinatorica, 19, pp17-41, 1999.

[5] J. Kleinberg, “Single-source unsplittable flow”,
Proceedings of the 37th on Foundations of Computer
Science (FOCS), pp68-77, 1996.

[6] S. Kolliopoulos and C. Stein, “Improved
approximation algorithms for unsplittable flow
problems”, Proceedings of the 38th on Foundations of
Computer Science (FOCS), pp426-435, 1997.

[7] J. Fong, A. C. Gilbert, S. Kannan, and M. Strauss,
“Better alternatives to OSPF routing”, Algorithmica
(Special issue on network design), 43(1-2),
pp113-131, 2005

[8] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS
weights in a changing world”, IEEE Journal on
Selected Areas in Communications (Special Issue on
Recent Advances on Fundamentals of Network
Management), 20(4), pp756-767, 2002.

[9] B. Shepherd and A. Vetta, “Visualizing, finding and
packing dijoins”, in D. Avis, A. Hertz, O. Marcotte
(eds.), Graph Theory and Combinatorial Optimization,
Kluwer, pp219-254, 2005.

