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Abstract—We study a class of robust network design problems
motivated by the need to scale core networks to meet increasingly
dynamic capacity demands. Past work has focused on one of
two models. First, design the network for the known point-to-
point peak demands. Second, design the network to support all
hose matrices (all matrices not exceeding marginal bounds at
the nodes). Both models may be too conservative if additional
information on traffic patterns is available. We introduce a
capped hose model to explore a range of traffic scenarios, which
includes the above two as special cases. It is known that optimal
network designs for the hose model are always determined by
single-hub routing, and for the fixed-demand model are based
on shortest-path routing. We demonstrate that a wider variety of
routing templates is required to address the broader spectrum
of capped hose matrices. We propose the use of hierarchical
multi-hub routing templates, a generalization of hub and tree
routing. Our empirical analysis is based on a heuristic for the
resulting robust network design problem. These lead to two
important findings: (1) designs based on multi-hub routing are
often preferable to both hub and shortest path, (2) it may be
possible for a carrier to sample their traffic in order to determine
which type of routing is most cost-effective for their network.

I. INTRODUCTION

Traditional communication networks have been designed
based on knowledge of an expected traffic demand matrix that
specifies the aggregate traffic between every pair of nodes in
the network and evolves slowly, over a time scale of months
or years. In an era of data-dominant communication networks
with dynamic demand patterns, this traditionnal network de-
sign methodology loses its cost-effectiveness. For instance, in
emerging data services such as YouTube, user generated video
content and flash crowds are triggering an increasing amount
of dynamic uncertainty in the traffic demand. One specific
concern is that the real-time estimation of the dynamically
changing traffic patterns in large data networks is intractable.
Moreover, a pessimistic approach of designing for peak point-
to-point demands (also referred to as the fixed-demand model)
throws away critical information for achieving “cost-sharing”
between the varying demand patterns that arise over time.

A traffic model that has gained considerable popularity in
coping with dynamic demands is the hose model [1], [2], [3].
In this model, only bounds on the ingress/egress traffic of the
nodes are known. These bounds (called marginals) are physi-
cally represented by the various interface speeds of networking
hardware at any given node. The actually encountered point-
to-point traffic distributions are subject to dynamic variations

during network operation, but the network is provisioned to be
able to support any possible pattern meeting the ingress/egress
bounds. Formally, in the symmetric (undirected) demand case,
the space of hose matrices Hyy consists of symmetric matrices
D satisfying the bound: ), D;; < U(i) for each node 4, with
marginal U (4); in addition, the main diagonal of these matrices
is typically set to zero, reflecting the fact that nodes do not
send traffic to themselves.

The flexibility of the hose model, however, can also be a
drawback since totally random demand matrices rarely occur
in practice and the operator usually has additional information
a priori about their traffic patterns. For instance, it may be
that there are known bounds on the maximum demand U (3, j)
between pairs of nodes ¢, ;. If we add these as constraints,
ie. D;j; < U(i,j), to the hose constraints, we call this a
capped hose model. Depending on the relative sizes of the
U(i,5),U(i), the space of traffic patterns spanned by the
capped hose model ranges from purely deterministic point-
to-point demands (D;; = U(i,j) for each i, if the U(3)’s
are very large) to the space of unconstrained (uncapped) hose
traffic (if the U(,7)’s are large, e.g., = min(U(3),U(5))).
One may set these parameters accordingly, so as to avoid the
massive over-provisioning that may arise for either the fixed-
demand or unconstrained hose traffic models [4].

In order to solve the design problem for the capped hose
model, we propose the use of a class of oblivious routing
strategies, called hierarchical hubbing routing templates (HH)
([51), which generalizes the popular hub and tree routing
templates. We give empirical results based on a heuristic for
the corresponding new class of robust network design (RND)
problems.

We define indicators which quantify the extent or shape of
the traffic matrices spanned by the capped hose model. Specif-
ically, we define two “strength” vectors; one for marginals and
one for peak bounds. For instance, a large marginal strength
value for 4, indicates the relative importance of U (), i.e., how
constraining it is in this capped hose model. We show that
these metrics could be used as a predictor for which traffic
scenarios favour a shortest path routing (SP), and which favour
HH routings.

Another significant outcome from our empirical analysis is
that we often find that HH is superior in network design cost
(with link and node costs) to both SP and hub routing (HUB).
This lends further support to the use of HH oblivious routing



in the future.

A. Summary of Main Contributions

1) We systematically study the capped hose model as a gen-
eralization of the fixed-demand and the unconstrained
hose models. This allows tapping into a whole new range
of practically relevant traffic scenarios.

2) We initiate a formal study of a class of RND problems
based on oblivious hierarchical hub routing templates
(HH), a generalization of tree and single-hub routing
used by optimal virtual private networks (VPNs). We
provide theoretical examples showing that SP is some-
times cheaper than HH by a factor of Q(logn), and that
HH may be cheaper than SP by factors as large as n,
where n is the number of nodes in the network. Recent
work [6] has expanded the theory further.

3) We perform an empirical study (based on both randomly
generated and real traffic data) on the space of new
capped hose traffic polytopes.

4) Our initial empirical findings show that for most in-
stances, HH is better than single-hub VPN, suggesting
that multi-hubbing at different layers can be important
for network cost savings. Empirical results also suggest
that for many instances HH is significantly better than
SP.

5) We provide some initial understanding of which traffic
scenarios favour designs based on SP-like routing, and
which are more HH-like. This is achieved by introducing
two metrics that quantify the strengths of the marginals
and peak demands in the specification of a collection
of traffic matrices. These indicators could be used as a
predictor for which of the two routing templates, SP and
HH, is better. This is a potentially significant tool for
carriers to cope with the design problem with unknown
and changing demands.

II. TRAFFIC ENGINEERING FOR CORE NETWORKS

A. Oblivious Routing and Routing Templates

Apart from the traffic modelling complexities mentioned
above, which form the basis for network infrastructure plan-
ning and design, there is a second operational complication
arising in any network with dynamically changing traffic pat-
terns: how should traffic be routed on an installed infrastruc-
ture? Since centralized or distributed control planes may not
have the speed and flexibility to adapt dynamically to rapidly
varying traffic patterns without the risk of inducing detrimental
oscillations [7], the vast majority of today’s networks are
designed based on the principle of oblivious routing, usually
based on SP, both on the circuit and on the packet layer.

Informally, Valiant [8] defined oblivious routing as “the
route taken by each packet be determined entirely by itself.
The other packets can only influence the rate at which the
route is traversed.” Formally, this amounts to specifying a
template: for each possible communicating pair of nodes i, j,

one specifies a path P;;.! Traffic from node i to j is always
routed on P;; independent of any other demands or congestion
in the network. Oblivious routing is attractive because it
enables strictly local routing decisions. In contrast, stable non-
oblivious routing would require a global network control plane
performing path optimization on a time scale much faster
than the congestion and traffic variation dynamics, which is
impractical in most scenarios.

For the fixed-demand traffic model, a minimum cost de-
sign is achieved using an oblivious SP routing template.
Using SP for hose traffic, however, may result in significant
over-provisioning of network resources (if blocking is to be
avoided)[4]. On the other hand, it was proved in [9] that
the optimal design (in the undirected setting) for the hose
model is always induced by a tree routing template (i.e. there
exists a network-specific tree, and the template is to use the
path P;; in that tree between node 4, 7). In [2], [3] a simple
polynomial-time algorithm was given to produce the optimal
tree template. Their analysis shows that the resulting network
(called a virtual private network - VPN) actually has enough
capacity to support hub routing (HUB) within the tree. That
is, there is a hub node h and enough capacity in the tree, for
each node to reserve a private circuit of size U(¢) to h. We
use HUB to denote such routing templates.

B. The Capped Hose Model

Suppose we are given a capped hose model with nonnega-
tive data U (i), € [n] and U(4,7) : 4,j € [n]. It is reasonable
to assume that U(4,j) < min(U(i),U(j)) since otherwise
we could simply lower its value to this upper bound with no
effect on the space of matrices. Hence we define the relevance
interval for Ui, j) as

[0, min(U (2), U(5))

and assume all bounds lie in their relevance interval. Note that
this implies that for each ¢, U(¢) > max;(U(3, j)).

Note next that if U (i) > >, U(i, j) then the hose constraint
for 7 has no impact on the space of capped hose matrices. We
thus define the relevance interval for U (i) to be:

[max U (i, 1), 3 UG, 5)]-
J
We now see that for all data involved, the closer they are to
the upper limit of their relevance interval, the less constraining
they are on the resulting class of capped hose demand matrices.
We use this intuition to now define our strength metrics.

C. Marginal and Peak Demand Strength Metrics

For any capped hose model, we propose two vector mea-
sures 7w (for peak) and p (for marginal) to indicate the
relevance of the different traffic measurements in defining a
given collection of traffic patterns. For example, if (i) is
large, it means that the marginal U (¢) has a significant role.
On the other hand if 7 (¢, ) is large, it means that the peak

'Valiant actually considered a randomized version where the flows could
be fractional.



demand U (7, j) has a more significant role in determining a
cost efficient routing template. One aspect of this study is
to examine whether these 7 and p measures can be used to
classify traffic instances as being more favourable for a SP or
hub-like routing template.

Given marginals and peak demands (in their relevance
intervals), we let the strength of node ¢’s marginal be:

) = Sy UG~ U6

>-; U(i,j) — max; U(4, j)
Similarly, the strength of the peak demand between two nodes
1,7 is:

’ min(U (i), U(4))
These metrics range from 0 (weak) to 1 (strong), and we claim
that they are related to the cost optimality of hub routing and
shortest paths templates, respectively.

We thus define our strength vectors o € R™ for marginals
and 7 € R™" for peak demands, with pu; = (i) and
m;,; = m(4,7) respectively. A capped hose instance that is
hose-like “should” have relatively high marginal strengths, and
if it is peak-demand-like it should have high peak demand
strengths. Based on this intuition, we attempt to classify a
capped hose instance by the Euclidean norm of these two
vectors (see Figure 5 for a preview).

D. Hierarchical Hub Routing and Circuits

It is well-known that designing a network for hose matrices
is quantitatively similar (e.g., up to a factor 2 in capacity)
to designing for a single “uniform multiflow” instance. Since
uniform multiflow instances can be viewed as a convex com-
bination of hub routings ([8], [4]), it seems natural that one
of these hubs would deliver a good overall network design
in terms of link capacity cost. However, in the capped hose
model, we may “punch holes” into the space of demand
matrices by letting some U (4, j) be much smaller than others.
This allows for the existence of certain regions within which
there is much denser traffic than between such regions. Since
these regions have their own capacity sharing benefits, one
should no longer expect a single hub, but multiple hubs, each
serving its own region of dense traffic.

This forms one motivation for our choice of hierarchichal
hub routing templates (HH). Each HH template is induced by
an associated hub tree. If the hub tree is a star, it corresponds
to standard hub routing. If the hub tree has more layers,
its internal nodes represent possible hub nodes for different
subnetworks (these subnets are necessarily nested due to the
tree structure). A detailed description is given in Section IV.

Our work was partly motivated by work in [4], where
Selective Randomized Load Balancing (SRLB) is used to
design minimum-cost networks. They showed that networks
whose design is based on oblivious routing techniques (and
specifically SRLB) can be ideal to capture cost savings in IP
networks. This is because there exist optimal designs reserving
capacity on long paths, where one may employ high-capacity
optical circuits. These “long circuits” partially avoid expensive

IP processing and equipment at every internal node. (Their
empirical study incorporated IP router, optical switching, and
fiber costs.) In this paper, instead of a design based on hub
routing to a small number of hubs, we consider more general
HH routing based on hub trees (as deployed in [5]). Once
again, however, if e = uv is an edge of a hub tree we reserve a
dedicated circuit between n(u), n(v) (where 7 identifies where
u, v are mapped to in the network).

E. The Robustness Paradigm

We are given an undirected network topology with per-
unit costs of reserving bandwidth. In addition we are given
a space of demand matrices (in our case, the capped hose
model) which the network must support via oblivious routing.
This space, or “traffic model”, is meant to capture the time
series of all possible demand matrices which the network
may encounter. The goal is to find a routing template which
minimizes the overall cost of reserved capacity needed to
support all demands in the traffic space. The formal definition
of robust network design (RND) appears in Section III.

Due to the optimality arguments of various routing tem-
plates for the traffic models under consideration, we focus
on RND restricted to the routing templates SP, HUB, TR
(tree routing) and HH. For a class of templates X, we denote
by RNDy, the RND problem where one must restrict to the
corresponding class of templates (RND is the unconstrained
problem). While RNDgp, RND1r and RNDyyp have been
well-studied, we initiate a formal analysis of RNDypyg in
Section IV. We also propose a heuristic for this version in
Section V.

FE. Related Work

Oblivious routing approaches to network optimization have
been used in many different contexts from switching (e.g.,
[10], [11], [12]) to overlay networks ([13], [14]), or fundamen-
tal tradeoffs in distributed computing [8], [15] to name a few.
In each case mentioned above, the primary performance mea-
sure is network congestion (or its dual problem throughput). In
fact, one could summarize the early work by Valiant, Borodin
and Hopcroft as saying that randomization is necessary and
sufficient for oblivious routing to give O(logn) congestion in
many packet network topologies.

The present work’s focus is not on congestion, but on total
link capacity cost. This falls in the general space of RND
problems, which includes the Steiner tree and VPN problems
as special cases. Exact or constant-approximation polytime
algorithms for several other important traffic models have also
been designed, e.g., the so-called symmetric and asymmetric
hose models [16], [5]. It has been shown however, that it is
NP-hard to approximate RND in undirected graphs within
polylogarithmic factors for general traffic polytopes [5].

Our work also extends the long stream of work on designing
VPNs [1], [3], [9], [17], [18]. Previous work has focused on
provisioning for a VPN based on either the hose or the fixed-
demand models (c.f. [19]). Designing for more general traffic
models in this context has not received much attention. We



take an intermediate step by examining the capped hose model
which to the best of our knowledge has not been studied.

With some thought, the new class of RNDyy problems is
almost equivalent to solving RND but only using tree routing
in the metric completion of the graph. The latter approach is
exactly the idea used by Anupam Gupta (c.f. a long version of
[20] contains full details) to show an O(log n)-approximation
for general RND via metric tree embeddings.

III. THE ROBUST NETWORK DESIGN (RND) MODEL

To understand the hierarchical hub routing problem we
first introduce the robust network design paradigm in full
generality.

A. Formal Definition

An instance of RND consists of a network topology (undi-
rected graph) G = (V, E), as well as per-unit costs c¢(e) of
bandwidth on each link e € E (the edge costs may be implicit
if G is weighted). In addition, we are given a convex region
D C RY*V. The region®> D represents the traffic model or
demand universe, that is, the set of demands which have to be
supported. In other words, any matrix D € D must be routable
in the capacity we buy on G. The cost of the network increases
as this space grows.

One may define several versions of RND depending on
assumptions on the routing model. Most common in practice
(and the focus of this paper) is the oblivious routing model
described above.

Our main objective in the context of RND is then to
compute an oblivious routing template in a specific class of
templates which leads to a link capacity vector cap, whose
overall cost is minimized. We use RNDx (G, ¢, D) to denote
the cost of an optimal solution

Given a fixed routing template P = (P;; : V ¢, j), the cost
of supporting all demands in the demand polytope P can be
computed in a straightforward fashion. For each edge e &
E(G), we compute a “worst demand” matrix in P in terms
of routing on e (using the routing P). This gives rise to the
following sub-optimization:

cap.(P,D) := max Z D;;. (1)
i,jEV:
e€P;;

RND then asks for a template P that minimizes the cost of
the overall required capacity:

RNDx(G,¢,D) = 7];1161% Z c(e)cap, (P, D).
ecE

B. Hierarchical Hub Routing Templates (HH)

We now define hierarchical hub routing templates HH [5], a
generalization of (single-hub) routing. Such oblivious routing
templates are derived from a tree 7' whose leaves consist of
the terminal nodes, that is, V(G) without loss of generality.
We call this the hub tree. The internal nodes are “abstract”

2We always assume that D is itself well-described in the sense that we can
solve its separation problem efficiently, e.g. in polytime.

Fig. 1. A hub tree. A “region” of terminals is represented by a dashed circle.
Internal black nodes of the tree are the ones that will be mapped to hubs in
the network topology. White leaf nodes are terminals.

in the sense that they represent nodes (yet to be identified
in G) which will act as hubs for certain subsets of terminal
nodes. For instance, for any non-leaf node v € T, let T, be the
subtree rooted at v dangling below it. The interpretation is that
the leaves L, in T, represent a region of terminal nodes which
should have a dedicated hub (this hub will correspond to v).
The family of regions arising from a tree obviously forms a
nested family (Figure 1).

Obtaining an oblivious routing template from the HH class
is a two step process. First, we need to pick a hub tree, and
then map its internal node to physical nodes. In this second
stage, we find a map from each internal node v to a real node
in G to act as a hub. Such a hub map n : V(T') — V(G) must
satisfy n(v) = v for each leaf of T.

Given such a hub mapping, there is an induced oblivious
routing template defined as follows: for each pair of leaf nodes
i,7 in T, let ¢ = wvg,v1,v2,...,v; = j be the unique ij
path in 7. For each ¢ = 0,1,...,l — 1, let P, denote a
shortest 77(vq)n(vg+1) path in G. Then we define P;; to be
the concatenation of paths Py, Pi,..., P (resulting in a
possibly non-simple path). Naturally, the special case of HUB
routings corresponds to taking 7" equal to a star.

Note that each hub tree thus gives rise to many possible
routing templates, one for each mapping 7 (analogous to the
specific choice of hub node in hub routing). Call this the
class of hierarchical hub templates (HH). Note that, in some
scenarios, there are single-path oblivious routing templates that
are unachievable by hierarchical hub templates. For instance
in a complete graph on four nodes, with unit weight edges,
there is no hierarchical hub template which corresponds to the
shortest path template (each P;; consists of the edge ¢j).

HH routing also responds to one practical impediment of
hub routing architectures, pointed out in [4]. Namely, network
providers are generally opposed to having all traffic routed
via a single hub (or a small cluster of hubs) in the center of
a large network. In particular, traffic within some local region
should be handled by hubs within their own “jurisdiction”.
Hub trees potentially give a mechanism for specifying these
local jurisdictions.



IV. THE OPTIMIZATION PROBLEM RNDyy

There are several layers to the optimization problem
RNDpypg. First, we must find a hub tree T - this is the core
decision for which we provide a heuristic algorithm in Section
V. Second, given a hub tree, we must map it to the network
graph to obtain a valid routing template. An efficient solution
to this mapping problem is known for T-topes® [5]; we show
that this can be invoked to solve the problem for general
polytopes in Section IV-A. Finally, given a template, we must
ultimately solve for capacities it induces, as we discuss in
Equation (2) below.

In Section IV-B we discuss several classical problems
which arise as special cases of RNDyyy. Finally, we provide
some theoretical bounds between RNDyy and RNDgp in
Section IV-C.

A. Turning a Hub Tree into a Solution

Consider the case where a hub tree 7' (with leaf set V(G))
is prescribed for the network G. This case is of independent
practical interest when a network provider wishes to self-
identify a regional clustering within their network. In other
words, they provide the hub tree, and it only remains to
identify which nodes to act as the hubs.

From the definition of HH templates, once we know the
mapping 7 : V(T) — V(G) of hub nodes to network nodes,
we have determined our HH routing template. In general RND
we would then calculate the capacities required via (1). In
RNDyy we proceed slightly differently.

As discussed in Section II-D, our strategy is to have a
dedicated circuit between 7)(w), n(v) for each edge e = wv €
E(T). Hence for each edge of T, we must determine the
largest demand using this circuit (under the HH template). This
is analyzed as follows. We let fund(e) denote the “fundamental
cut” for e € T'; that is, it consists of all ¢, 7 pairs whose path
in T uses the edge e. These are precisely the demands which
ultimately route on the circuit between n(w), n(v) in G. Hence
if there are demand matrices that route d units of flow on e
in T, then we need to reserve d units of capacity on the path
between n(w),n(v) in G. We now compute the size of the
circuit as follows, where D is the demand polytope.

> Dy )

i,jE€fund(e)

upr (€)=

We hence see that a tree T plus the polytope D induce
some maximum circuit capacities for the edges in T*. Given
a hub mapping 7, our total network cost is then obtained as
follows: for each e = vw € T, reserve up r(e) on a shortest
path between 7(u),n(v) in G. This is because we want these
circuits to be operational, independently of one another and of
current traffic conditions. The problem of mapping hubs from

3A T-tope is a polytope of demands, denoted by ‘Hr,p, wWhich are routable
on some tree 1" with edge capacities b. This class generalizes hose polytopes,
which can be viewed as demands routable on a star.

41t is worth noting that up,T is defined to be the smallest capacity vector
u such that D C Hr ,,. In other words, designing a network to support the
T-tope H1,up 1 also supports D.

T to G becomes: given a tree 1 with edge capacities u, find
a valid mapping 7 : V(T') — V(G) which minimizes

> upr(e)dista(n(v)n(w)) 3)

e=uveT

CHH(T) =

where distg(s,t) is the length of a shortest st-path in G with
edge costs c. The problem of determining an optimal 7 for
capacitated trees is precisely the hub placement problem con-
sidered in [S]. They give a (polytime) dynamic programming
algorithm to find a valid mapping n : V(T') — V(G) which
minimizes

As pointed out in [6], minimizing (3) is slightly different
from computing 7 so as to minimize capacity cost based on (1).
Indeed we could define two versions of our problem depending
on which formula we use for computing link capacities:
RNDSI){ < RNDS’I){. For the hose polytope the two quantities
are the same; this follows from the fact that the optimal tree
template is induced by a hub routing [2], [3].

B. RNDyy and Other Algorithmic Problems

RNDyy contains well-studied algorithmic problems as spe-
cial cases. First, if D = H s is the class of hose matrices, then,
as mentioned earlier, an optimal solution to RND is induced
by a hub routing template, which is in turn induced by a star
hub tree. Hence in this case RNDyy = RNDyyg = RND.
In [5] it is asked whether this also holds for any 7'-tope
(Generalized VPN Conjecture).

Second, consider the case where D consists of a single
demand matrix D. Obviously, the optimal solution is induced
by a SP template. RNDyp however, asks for an optimal
HH template. This is a classical problem in combinatorial
optimization called the minimum communication cost tree
(MCT). Find some tree (not necessarily in (), containing
V (@), such that if we route the demands D on T, the overall
routing cost is minimized.’ Being allowed to use a hub tree for
the routing, as opposed to a subtree of G, essentially means
that we are restricting to MCT with metric costs®. For the
special case where G is itself a complete graph with unit-cost
edges, Hu [22] showed that an optimal solution is induced by
a so-called Gomory-Hu tree on the complete graph with edge
capacities D;;.”

As we now see, RNDyy may incur a logarithmic increase
over RND, and in fact RNDgp. On the positive side, it is
known that in general there is a tree in the metric completion
of G whose “distortion” is at most O(logn) [23]. Gupta
has shown (see [24] for full details of his argument) how
to obtain an O(logn) approximation for RNDrR via metric
embeddings. This implies RNDyy = O((logn)RND) as can
be seen by noting that RNDyy; costs no more than a best tree
routing on 7" in the metric completion. To argue this, define a
hub tree 7" by hanging a leaf edge vv’ from each node of T'.

S5This is directly related in turn to the average stretch tree problem [21].

6Costs are metric if they are induced by a cost function that is a metric.

7In general, the Gomory-Hu tree for a capacitated graph need not be subtree
of the graph; hence the requirement that G is complete.



Then consider the mapping where each v, v’ maps to v € G.
This establishes:

Fact 1. For any instance of RND,

RNDyyy < RNDrg.

We mention, however, that there may yet be polytime
O(1)-approximations for MCT and indeed RNDyy. For the
purposes of our study, we use a heuristic algorithm instead of
metric embeddings to find our best hub trees. This is outlined
in Section V.

C. Basic Results for RNDyp

In this section we show that RNDgp and RNDyy are
incomparable; depending on the instance, one may be signif-
icantly cheaper than the other. This motivates our main goal
of classifying the demand spaces according to which template
is better.

We now establish a family of RND instances where re-
stricting to HH templates (i.e. RNDyypy) incurs a penalty, and
in fact a worse penalty than restricting to SP templates (i.e.
RNDgp).

Theorem 1. There is a sequence of (unit-cost) graphs
{Gr}nen on n nodes and demand polytopes {Dy, }nen such
that for these instances

RNDHH (Gn) = Q(log n RNDSP(Gn))

Proof. We describe G = G, and D = D,, for a fixed n. The
network graph G consists of a d-regular, a-expander graph
on n vertices, where d = O(1) and a = Q(1) (see [25]
for existence proof). Directly we have that |[E(G)| = O(n).
Moreover, all edges have unit cost.

The demand polytope D consists of a single matrix: one
unit of demand between the endpoints of any edge in G. The
RNDgp solution then consists of the network itself (route each
demand on its own edge). Its cost is O(n), the number of edges
in the graph. Let T' be any hub tree. We show that the cost of
any HH solution induced by 7' is 2(nlogn). Hence, RNDygy
is Q(nlogn).

Let ¢ € V(T') be a center of the tree, that is each component
of T'\ {c} has at most % leaves (it is well-known, and easy to
see that every tree has a center). We call an edge ¢ € E(G)
separated by c in T if its endpoints lie in different components
of T\ {c}. We let E. C F(G) be the set of all edges separated
by cin T'. Let C; be one of the components in 7'\ {c} and let
£(C;) be the leaves of C;. We know that |¢(C;)| < 5. Hence,
since G is an a-expander, there is at least a|¢(C;)| edges going
out of C;. So we have that |E,| (or the total number of edges
between the C};’s) is at least

1 «@ an
|Ee| > 3 ZOM(Q‘)\ = 52 (Ci)| = >

3

as . [¢(C;)| = n (the leaves of T consist of the nodes of
G).

Fig. 2. A bad edge e € E(G). The edge e is separated by ¢ in T' (as per
the left portion of the figure), and one of its endpoint u is not close to c (as
per the right portion of the figure).

Let n: V(T) — V(G) be the optimal hub map for 7. Call
anode v € V(G) close to c if
1

distg(n(c),n(v) =v) < D = logd(E min{27 %}n)

d

Let V. be the set of close vertices in G. Since G is a d-regular
graph, its size is

D)

R oA R | d 1 «a
V=S d = < P~ minft, &
Vel ; d—1 ~d—1 min{ g, 5517

We now merge the two concepts and say that an edge e =
zy € F. that is separated by c in T is good if both x,y € V,,
ie. z,y are close to ¢ - see Figure 2. Conversely, an edge
e = zy € E. is bad if one of its endpoints is not close to ¢
in T. Let B be the set of bad edges.

By the d-regularity of GG, a bound on the number of bad
edges is given by

=72 44 — 4"

Since the bad edges are unit demands that must be simultane-
ously routable in 7', the “non-close” endpoint of these demand
edges must route through the image 7(c) of ¢, imposing
a cost of at least log;(n). We have (n) bad demands,
each incurring a cost of (logn), and thus the cost of the
optimal HIERARCHICAL HUBBING induced by 7' routing is
Q(nlogn). O

V.| _ an  dan L@
2

|B| > |Ee| -

The next result shows that RNDtr may be much cheaper
than RNDgp. Hence, we can get an unbounded gap between
RNDgp and RNDrg. By Fact 1, this implies that RNDyy
may also be much cheaper than RNDgp.

Theorem 2. There is a sequence of weighted graphs {G, } nen
and demand polytopes {Dy, }nen such that

RNDgp(G,,) = Q(n?)

and
RNDrtr(G,) = O(1).



Proof. The network G = (V, E) (actually Ga,,12) consists of
two stars centered at nodes a,b connected by an edge. The
leaves are v;, v, with the following edges:

E={av;: 1 <i<n}U
{w] :1<i<n}ju
{v] : 1 <45 <nju

{ab}.

The edges are weighted as follows: the bridge edge ab has
weight one, the star edges av; or b, for 1 < i < n have
weig?t ﬁ and the edges viv;- for 1 < ¢,57 < n have weight

T};Le (symmetric) demand polytope D consists of convex
combinations of unit demands between v; and v;-. That is, for
each i, j let D*J be the matrix with l'),',,w; = DU;W =1 and
all other entries 0. Then D = conv(D"?).

The optimal shortest path template in the network consists
of routing the demand between v; and v§ through the edge of
cost 1 — % connecting v; and v;-. This template induces a cost
of RNDgp = n%(1— 1) =n? —n = Q(n?).

Now consider the tree template induces by the union of the
two stars. In order to support D, the sub-optimization problem
only reserves one unit of capacity on the bridge edge ab, as
well as one unit on all star edges. Hence, this capacity cost is
O(1), and is an upper bound for the best tree solution.  [J

V. A HEURISTIC FOR CHOOSING A HUB TREE

We now develop a heuristic for RNDyyy. It is tailored for
the capped hose model, but could be extended to handle any
traffic polytope. The high-level intuition is to group nodes so
that traffic within a group is large compared to traffic leaving
the group. This suggests the need for a hub to handle the
group’s local traffic. It is straightforward to show that there
is always an optimal hub tree for RNDyy where the tree is
binary (we defer the details to the end of this section). Hence
our algorithm’s focus is to find a “good” binary hub tree.

To construct a binary tree from the terminal nodes V', one
could either proceed by a top-down approach (recursively
splitting groups of nodes in two) or a bottom-up approach
(recursively merging nodes together). The former has the
flavour of repeatedly solving SPARSEST CUT problems. This
problem is APX-hard and the current best approximation
factors are polylogarithmic [26], [27]. Instead, we follow the
bottom-up approach. We are thus seeking to repeatedly merge
pairs of node sets which share a lot of traffic with each other.
The key to this calculation is a sparsest cut-like measure which
we introduce next. This is then used in a Binary Tree Sparsest
Merging (BTSM) algorithm.

A SPARSITY MEASURE

We devise a sparsity measure that seeks to maximize the
traffic between two groups, compared to the traffic sent outside
the merged groups. This measure is very similar to the capacity
on a (fundamental) cut explained in Section III-A - see
Equation (1).

In the setting of the capped hose model, the maximum
possible demand between a pair of disjoint sets of nodes
A, B CV is given by

u*(A, B) = maximize ), 4 ;cp Dij
subject to Dij < Uij for all ¢, j
> Dy <U(@) foralli .
D;; =0 for all ¢
D>0

This problem can be solved efficiently, since it can be cast
as a b-matching or max-flow problem. For instance, consider
a bipartite graph H with bipartition A, B. Each edge ij has
a capacity of U;; and is oriented from A to B. We also add
a source s with edges (s,4) for ¢+ € A with capacity U (3).
Similarly we add sink ¢ with edges from B. A max st-flow
in this graph gives precisely the value u*(A, B).

The sparsity of a pair of disjoint sets of nodes A,B C V
is then:

u*(AUB,V\ (AUB))
u*(A, B)

One notes that it trades off the flow out of A U B versus the
flow between A, B.
THE SPARSEST MERGING ALGORITHM

Our proposed heuristic algorithm (see Algorithm 1) builds
up a binary hub tree 7', starting from a forest consisting of
a set of singletons. At each step it has a forest and looks for
a pair of rooted trees that has the minimum sparsity value.
Specifically, it computes the sparsity measure for the leaf sets
for such a pair of trees. The two subtrees are then merged,
that is, a new root node is added to I' and becomes the parent
of the two previous rooted subtrees. When the forest becomes
a single tree, we stop. Clearly this can be done in polytime.

sc(A,B) =

Algorithm 1 Binary Tree with Sparsest Merging algorithm.

Require: A set of nodes nodes V' with peak demands U (3, j)
for each pair of nodes 4, j € V' and marginals U (i) for each
node i € V.

Ensure: A binary demand tree 7.

T=(Vv,0)
S+ V(T)
while |S| > 1 do
Find i, j € S that has minimum sparse cut value.
Add a new node u to T'.
Connect u to 7 and j.
Add u to S.
Remove i and j from S
end while
return 7T

RESTRICTING TO BINARY TREES.

In this section, we show that there is always a binary hub
tree that is optimal for RNDyp.

Let T" be any hub tree that has at least one node u of degree
at least four. Then it is possible to form a new hub tree 7" with
enn(T”) < epn(T), and such that the sum of the degrees of




"

Fig. 3. Dividing internal nodes to get a binary tree.

nodes with degree greater than four is smaller in 7”. Hence,
repeating the process eventually reduces the number of degree
at least four nodes to zero, and we end up with a binary tree.
Here is the process in details.

Consider a node u of T' with degree at least four. Replace
u by two nodes v’ and u” such that u’s old parent is now
connected to ', and v’ is connected to w’s first child as well
as to u”. Then u” is connected to the remaining children of
u (see Figure 3). Note that the sum of degrees of nodes with
degree at least four is decreased by one, since u’ has degree
three and u” has degree deg(u) — 1.

The capacity on the edge between u’s parent and u’ is
equal to the capacity between w and its parent; the capacity
between v’ and u” can be inferred using equation (2). All
other capacities remain the same - the capacity between one
of u’s children and its new parent v’ or v’ is the same as the
capacity between v and that child in 7. Note that we only
split u into two nodes and added enough capacity between
those two nodes to route any feasible traffic matrix. We have
the new capacitated 7" can support exactly the same demand
matrices as T. (The T"-tope and T-topes are the same.)

Finally, an optimal hub map of 7" can be implemented for 7’
as follows. One maps v’ and u” to the node that u is mapped
to. Hence, T can produce the same oblivious routing as T,
so its optimal cost ey (7”) is at most ey (7).

VI. EVALUATION STUDIES

We compare the network design costs for capped hose
models using the routing strategies SP and HH. We solve the
associated optimization problems (RNDgp, RNDyy) across
many instances of the capped hose traffic model. For the
purposes of this study, we implemented an exact method for
SP, and employed our BTSM heuristic in the case of HH
routing.

For the evaluation set-up, we use two carrier network
topologies: the American backbone network Abilene (11
nodes, 14 edges), and the Australian telecom network Telstra
[28] (104 nodes, 151 edges). We assume that per-unit link
capacity costs are proportional to physical distances so we
use this as our cost vector c¢ for determining the best RND
solution. Our traffic data is based both on randomly generated
traffic instances within the capped hose model constraints, as
well as on a traffic scenario based on real data.

For the simulated traffic scenarios, for each network we
randomly generate many traffic instances (each corresponding
to a capped hose polytope) on which to solve RND. That is,
each instance arises from some collection of peak demands and
marginals. Our random instances are generated starting from
actual population statistics (see Section VI-A). In addition
on Abilene, we use real data based on previous work from
[29] which gives a time series of point-to-point demand
measurements that can be used to create capped hose models
(described later).

Our results show that HH templates are often the most
cost-effective. That is, RNDyy is very often less than both
RNDgp, and RNDyyp. In particular, this means that by
adding peak capacities U (4, j) into the hose model, the single-
hub tree-routing template is no longer cost-effective. We need
additional hubs for a cost-effective network design. This is
strong evidence for the use of HH routing.

A. Generating Traffic

To generate our traffic demand matrices, namely marginals
U (i) and peak demands U (i, j), we try to mimic how traffic is
naturally generated in todays core networks. It has been widely
accepted that core traffic is stochastic in nature (“bursty”)
and that peak demand is much larger than average demand.
This change in traffic patterns presents a moving target for
service providers. The uncertainty is due to novel content-
based network applications combined with factors such as data
center consolidations and content mobility (content migrating
from location to location based on where they are consumed).
Therefore in our evaluation scenario, we first assume peak
demands, and then impose marginals based on the equipment
choice at each node (capacity and number of ports at the
ingress and egress nodes). Our process is anchored by first
fixing the peak demand between every pair of node locations
based on their population [30]. This gravity model takes into
account the population size of the two sites as well as their
distance. Since larger sites attract more traffic and closer
proximity can lead to greater attraction, the gravity model
incorporates these two features. The relative traffic between
two places is determined by multiplying the population of one
city by the population of the other city, and then dividing the
product by the distance between the two cities. In our case,
the peak demand between two cities %, j is

U(i,j) = a(i, j) Population(¢) Population(j) 4)

where «a(i,j) = 1/distance(i, j)? and distance(i,j) is the
geographical distance between node i and node j.

As datacenter based traffic dominates over the Internet,
significant research activity is underway to learn the charac-
teristics of this traffic. The routing of data-center bound traffic
within the ISP network is typically controlled by BGP policies.
However, as noted in [31], we see that the end-to-end traffic
matrix showing how the total traffic to YouTube video-servers
is divided among different data centers follows the gravity
model. Thus, the proposed HH routing template could also



be extended for routing within data center network with the
appropriate for hub placement.
GENERATING MARGINALS

To generate marginals, we propose sampling within the
individual relevance intervals, as discussed in Section II-B.
We start by discretizing U (4)’s relevance interval into s > 0
steps, for each of the n nodes 7. Then, for each value o; €
{0,1,2...,s} we get a U(i) within its relevance intervals.

Formally:
T

Thus each vector o € {0,1,...,s}" yields an instantiation
of the marginals. For fixed s and n, this gives (s 4+ 1)™ pos-
sible data points, yielding all possible marginals within their
relevance interval up to a precision based on the coarseness
of the discretization (size of s).

It is impractical to generate all (s 4+ 1) points for large
n and s. To bypass this, we use a smaller value k£ in place
of n to generate (s + 1)* points. We then sample uniformly
from these o to assign the values for each node, i.e. we mimic
the distribution of the short vector o of length k to create our
longer marginal vector of length n. So we get

u[k] ZU ,]

where o € {0,1,...,s}* and U[k] is chosen uniformly at
random from {1,2,...,k}.

Ui) = maXU (,7) —max U (3, j)).
J

U(i) = max U(i, j) rnaXU(z NG
J

B. Time-Series Traffic Matrix Data

For the Abilene network, we use the estimation of point-
to-point demands from the work of [29] to create a realistic
data point. The data consists of 24 weeks worth of traffic
matrices sampled each five minutes. In other words, we get
a sequence {D} ;}/_; (T' = 48384) of demands from i to
g for all nodes 7,j in the network. We transform this data
into marginals and peak demands for a capped hose model
as follows. The peak demand between two nodes i, j is by
definition U (7, j) = max; D} ;. Similarly, node 7’s marginal is
the (minimum) capacity requlred to route the maximum traffic
out of that node at a given time step: U (i) = max; >_; D} .
We consider different sampling intervals, i.e. various 71"s.

C. Computation of Link Costs

It is simple to compute the capacity u(e) needed on each
edge e for HH - we just add up the capacities from every
hub tree edge f = ij for which the 7n(i)n(j)-path passes
through e. For SP, we follow a similar sub-optimization as
used for HH templates. Namely, we find the maximum value
of u(e) = >_,;; wij(e)Di; over all demand matrices D in our
capped hose universe D where w;;(e) is 1 if P;; uses edge e,
and is 0 otherwise. For any edge e = st, it is straightforward
to see that the set of 5’s with w;;(e) = 1 induces a bipartite
graph H = (V(G), {ij : w;; = 1}) when the P;;’s are shortest
paths. Suppose H is not bipartite, then there is an odd cycle

C = iyiz. . .dgg41. Thus, wi,, 4, = 1 and w;;;,,, = 1 for

(51

13

19k+1

Fig. 4. Going from 4; to 4,41, always through e = st and along shortest
paths.

all 1 < 7 < 2k + 1. Without loss of generality, the fact that
P;;’s are shortest paths implies that ¢; is closer to s for odd j’s
and closer ¢ for even j’s (see Figure 4). But then this means

the path P/, ., = SPg(i2kt1,8) U SPq(s,i1) is strictly
shorter than P; as it doesn’t use e; contradiction. Hence

T2k 41,01
we may use a max flow routing algorithm to compute u(e).

The computation of link capacities can thus be done with a
collection of all shortest paths {P;;} generated using standard
algorithms.

Algorithm 2 illustrates our experimental procedure.

Algorithm 2 Experimental procedure.

Require: Network graph G = (V,E) (where edge costs
correspond to the geographical distance between edge’s
endpoints) and parameters s, k € N.

for each pair of node cities 7,5 € V do
Fix point-to-point peak demand between ¢ and j as per
Equation (4).
end for
for each o € (s + 1) do
for each © € V do
Fix node i’s marginal as per Equation (5).
end for
This gives a capped hose model cH arising from
marginals U(4)’s and peak demands U (i, 7)’s
Find marginal strength vector p of cH.
Find peak demand strength vector m of ¢H.
Solve RNDgp (G, ¢H) optimally.
Use our BTSM heuristic and Olver et al’s algorithm [5] to
approximately solve RNDyy (G, c¢H) and get a solution
of cost RNDyy (G, cH).
Report |[uf|2, [7[|2 and
end for

RNDSP (G,CH)
RND,; (G, cH)"

D. Results

In Figures 5 and 6, we plot the results of the low-cost
routing templates for two different network topologies Abilene
and Telstra®. Traffic matrix instances are plotted according to
their marginal and peak demand strengths and coloured based
on the ratio between the edge cost of the (optimal) SP routing

8A much smaller number of points were sampled to cover most of the
spectrum due to the computational constraints caused by the size of the Telstra
network.
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Fig. 5. The ratio between the edge cost of the (optimal) SP routing and
the HH routing found with our heuristic plotted against the norms of the
peak demand and marginal strength vectors for varying traffic, on the Abilene
network. Data points from the time-series of traffic matrices added, with
duration considered as label. Better viewed in color.

template and the HH routing template. A blue point indicates
that SP is better and a red point indicates that HH is better.
Moreover, the intensity of the colouring is proportional to the
proximity of the ratio to one. If the costs of SP and HH are
very similar, the color is almost white, otherwise it is highly
saturated

Intuitively, and as discussed in Section II-C, the x-axis
corresponds to the affinity of the traffic to the hose model.
A large p value means more constraining marginals. Thus
the optimal routing should primarily consider the marginals
only. We expect hub routing to do much better. Similarly,
the y-axis corresponds to the affinity of the traffic to the
peak-demand model. Again, a large 7w value means more
constraining peak demands, and thus we expect SP to do much
better. Furthermore, there is a duality between the p and 7
values: a demand universe can only have strong marginals or
strong peak demands, not both. This explains the quarter circle
“swoosh” shape of the plot.

VII. DISCUSSION

In [4], hub routing was used to compare the cost of two
architectures: one based on IP routing and one employing
circuits. Our work focuses on how the link and/or node costs
vary with the choice of routing template. We now address
some of the issues and our findings.

A. u— m as indicators for the choice of a routing template

We see that there is a continuum of traffic scenarios as a
function of the newly introduced p and m measures. As such
we propose that it is possible that the value of (u,7) could
serve as an important routing indicator since it accounts for
the strengths of the marginals and peak demands. As such,
knowing these values is useful information for determining the
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Fig. 6. The ratio between the edge cost of the (optimal) SP routing and
the HH routing found with our heuristic plotted against the norms of the
peak demand and marginal strength vectors for varying traffic, on the Telstra
network. Better viewed in color.

appropriate routing template. This is an important observation
because it also suggests a new sampling strategy for service
providers faced with designing for changing demands. In
addition to just using marginal demands, they can sample
the demand space to determine the relative strengths of the
peak and marginal demands. This may be used to choose an
initial routing template and, if necessary, evolve the template
to obtain/maintain cost-efficient routing. This further justifies
the need to measure link level traffic, both peak and average
demand, since it can feedback into the selection of an optimal
routing template for a given network topology.

An important consideration is the sampling interval. The
impact of the sampling interval can be clearly seen by the
evolution of the real data points in Figures 5 and 7. Each
such data point comes from a compilation of the real traffic
matrices over a certain period of time, as labelled next to
the points. As the interval increases from one week to four,
we see the capped hose model shift toward a more hose-like
universe, with stronger marginal (and consequently weaker
peak demands). If samples are over a short time horizon, then
the demand matrix does not change significantly and as such
we are designing for a single demand. In this scenario, SP
yields the cheapest routing template. However as the time
horizon gets longer, the different demand matrices could be
significantly different and in such scenarios the more flexible
design of HH/VPN brings in the added cost benefits.

B. Single versus Multi Hub Routing Templates

An interesting observation of this study is that there are
significant cost benefits for using a multi-hub routing template
versus the single-hub templates which yield optimal VPNs.
Table I shows the number of traffic instances where HH is
more cost effective than a single hub VPN solution. It is



TABLE I
NUMBER OF INSTANCES WHERE HH OUTPERFORMS SP
Network HH Optimal HH Optimal
Multiple Hubs Single Hub
Abilene (total number of instances: 6561) 3045 8
Telstra (total number of instances: 353) 246 0
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Fig. 7. The ratio between the node cost of the (optimal) SP routing and the
HH routing found with our heuristic plotted against the norms of the peak
demand and marginal strength vectors for varying traffic, and the Abilene
network. Data points from the time-series of traffic matrices added, with
duration considered as label. Better viewed in color.

straightforward to see that a best solution induced by any hub
tree is always as good (in terms of total cost) as a single-
hub routing. Indeed, mapping all internal nodes of a hub tree
to a single network node is always a valid hub placement
that yields the single-hub VPN-like routing. Since the hub
placement algorithm [5] is optimal, it is guaranteed to find a
hub placement that is as good as the best single-hub routing.

C. Routing Costs and Impact on Network Design

We evaluate the cost-effectiveness of the HH template
against SP using both link and node costs. Link or edge
capacity costs for HH are computed by solving a maximiza-
tion problem over the universe of traffic matrices. For node
costs we use the maximum possible link capacities that are
incident on a particular node. The intuition behind using these
maximum incident capacities is based on the hardware port
requirements for routing/switching the total traffic through that
node. However it is very rare for all incident links at the node
to simultaneously carry their maximum allowable traffic rates.

From Figures 5 and 7 for link and node costs respectively,
we see that HH shows significant cost savings for link costs
since we take advantage of dense traffic sharing points through
appropriate location of hub nodes. However, since the node
costs are being evaluated using physical link capacities the
gains are not as significant.
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VIII. CONCLUSION

The capped hose model introduced in this paper shines light
on the applicability of current routing template archetypes
(HUB and SP) parametrized by the marginal and peak de-
mands of the given traffic matrices. We have shown that
using the capped hose model provides additional flexibility
to network engineers for cost-optimal network design and
shows the relevance of the newly introduced HH templates. In
particular, this means that by adding peak capacities U (3, j)
into the hose model, the single-hub tree routing template
may no longer be cost-effective. Moreover, the peak demand
and marginal strengths presented here are a first attempt at
choosing routing templates based solely on traffic information.
Finally, the RNDyy problem is of theoretical interest by itself,
encompassing many other well-known algorithmic problems,
and is open to further investigation.
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