
Reserving Resilient Capacity in a Network

G. Brightwell G. Oriolo

Centre for Discrete and Applicable Mathematics Dept. of Computer Science, Systems and Production

London School of Economics University of \Tor Vergata"

London, U.K. Rome, Italy

F.B. Shepherd

Bell Laboratories

Lucent Technologies

Murray Hill, NJ, USA

Dedicated to the memory of Ewart Lowe

Abstract

We examine various problems concerning the reservation of capacity in a given network, where each

arc has a per-unit cost, so as to be \resilient" against one or more arc failures. For a given pair (s; t)

of nodes and demand T , we require that, on the failure of any k arcs of the network, there is su�cient

reserved capacity in the remainder of the network to support an (s; t) ow of value T . This problem

can be solved in polynomial time for any �xed k, but we show that it is NP-hard if we are required

to reserve an integer capacity on each arc.

We concentrate on the case where the reservation has to consist of a collection of arc-disjoint paths:

here we give a very simple algorithm to �nd a minimum cost fractional solution, based on �nding

successive shortest paths in the network. Unlike traditional network ow problems, the integral

version is NP-hard: we do however give a polynomial time

15

14

-approximation algorithm in the case

k = 1, and show that this bound is best possible unless P = NP.

Keywords: Network ows, resilience, capacity reservation.

A longer version of this paper appears as [11].

1

1 Introduction

A commonly encountered network design problem is that of reserving capacities in a network

so as to support a given set of pairwise tra�c demands. Algorithms for this network capacity

allocation problem have been developed by a number of groups, see for example [6, 8, 9, 19,

21, 22, 23]. One signi�cant drawback to this `vanilla' capacity reservation model is that it

does not account for the failure of certain network elements. For instance, if we simply reserve

capacity for a commodity along a single path, we make ourselves totally vulnerable to the

failure of any arc (or node) along this path. In many practical settings, this is not acceptable,

and we thus wish to reserve our capacities so as to be resilient to certain failure states in the

network.

Several groups have recently addressed this issue of \resilience" or \survivability" in network

design problems, e.g., [2, 3, 5, 10, 14, 15, 20, 24, 25, 26, 27]. Their solution techniques are based

primarily on polyhedral or branch and cut methods and hence produce exact optimal solutions

if they terminate, and usually give some guarantee of optimality even before terminating.

Such techniques are not always the right selection in a given scenario. On one hand, the need

for exact solutions must be balanced with the degree to which the input costs and data are

known or certain. These methods also do not exhibit polynomially bounded running time,

and hence performance may not scale well as network sizes grow. This may prove to be

an even larger issue for resilient capacity reservation which appears initially to be a much

less tractable problem computationally (c.f. [10])). In addition, many applications require

solutions in time scales which force the adoption of heuristics with fast run-time properties.

Many existing network planning tools for the (vanilla) capacity allocation problem resort to

some form of repeated single-source-destination heuristics. That is, for each demand pair

(s

i

; t

i

) a shortest path is found and then as much ow as possible is pushed on this path.

The process is then repeated until all demands are met. In its most general form, the cost of

an edge is updated as a function of its remaining capacity. This approach is fast and allows

for trivial implementation in software. In its simpler forms, however, one easily concocts

examples where it produces solutions arbitrarily far from the optimum. Of course, there are

many examples where the exact methods do not even �nd feasible solutions in a comparable

running time. Moreover, they can require substantial mathematical sophistication on the

part of its implementors.

Another situation where the single source-destination pair model applies is in an on-line set-

ting. Here, the demands are being given sequentially as they arise in the network. This area

is becoming increasingly important as network management becomes a concern of network

operators. This is heightened by the changing nature of demands from customers. In par-

ticular, bursty or short-term data transfers are becoming increasingly common. As a result,

larger amounts of point to point bandwidth are being traded on shorter time frames.

The present paper is dedicated to adapting the shortest path (or mincost ow) model to

a minimum cost resilient capacity reservation model. We are restricting ourselves to the

study of resilient capacity allocation for tra�c generated by a single source-destination pair of

nodes; we show that even this case presents some surprising di�culties. Overviews of previous

computational and theoretical work on related survivability and augmentation problems can

2

be found in [18] and [17].

We adopt the viewpoint that the network, with speci�ed nodes s and t, is given to us, along

with a per-unit cost c

a

for each arc a, and that we are free to reserve, once and for all, as

much capacity as we like on whatever arcs we choose. Our objective is to �nd a \reservation

vector" x minimizing the total cost, cost(x) =

P

a

c

a

x

a

, subject to supporting a given target

amount T of tra�c from s to t, even if any one, or more generally any k, of the arcs in the

network fails.

This rough description of the problem admits many di�erent versions, depending on the type

of network we are dealing with, the way we are required to recover from arc failures, and

especially on any structure imposed on the vector of reserved capacities itself. In this paper,

we consider two types of constraints on the capacity reservation vector.

1. Integrality: We may be forced to reserve capacity in discrete amounts, so that our reser-

vation vector must be integral.

2. Structural: Speci�cally, it may be required that our reservation vector be formed by

selecting a collection of disjoint (s; t)-paths (i.e., directed paths from s to t in the network),

and assigning a capacity to each path { we call such a reservation a diverse-path reservation.

Diverse-path solutions have several features which are attractive to network planners. For a

start, a diverse-path routing may be \hardwired" at the terminating nodes, thus decreasing

routing complexity. If tra�c ow control is centralized, then this allows load balancing of

tra�c over the collection of diverse paths. Even if this is not the case, as in a noncooperative

network, the restoration phase is much simpler since an arc failure may be treated as a path

failure, and tra�c routed along the path may be shifted to the remaining non-failed paths.

One �nal advantage is that they are conceptually simple to visualize and work with in any

operational setting.

2 Summary of results

In this paper, we consider various versions of the resilience problem; we summarize these and

our results in this section.

Throughout, we suppose (sometimes implicitly) that we are given a directed graph (network)

D = (V;A) with node set V and arc set A. We always assume that D comes with two nodes

permanently �xed as the source s and the destination t. We also suppose that we are given

a rational number T (usually an integer) representing the required tra�c ow from s to t

through the network D in the case of failure, and an integer k representing the maximum

number of arcs that may fail. Finally, we are also given a vector (c

a

) of non-negative rational

(again, usually integer) costs on the arcs a of D. We are seeking a reservation vector, which

is a non-negative vector (x

a

) on the arcs a, representing the amount of capacity reserved on

the arcs of D.

A reservation vector x = (x

a

) is (T; k)-resilient if, for each set K of at most k arcs in A, the

reserved capacities on the arcs in A�K are su�cient to admit an (s; t) ow of value T . The

3

cost of a reservation vector x is cost(x) =

P

a2A

c

a

x

a

. Our aim in all versions considered is

to �nd a minimum cost (T; k)-resilient reservation vector x in D.

The problem stated above is the General Resilience problem. We do not normally treat

k as part of the input, so an instance of this problem, for resilience against k failures, consists

of a network D, with speci�ed source and destination, a demand T , and a cost vector c on

the arcs of D. If the reservation vector x is required to be an integer, then the demand T

and all the costs must also be integers, and we have the Integer Resilience problem.

As explained in Section 3, for each �xed k, General Resilience can be solved in polynomial

time using linear programming or the ellipsoid algorithm. However, we show in Section 7

that Integer Resilience is strongly NP-hard even for k = 1, although we do give a simple

(k + 1)-approximation algorithm.

For most of the paper, we concentrate on the case where the reservation vector is also required

to be a diverse paths reservation, i.e., it is derived from a set P

1

; : : : ; P

m

of arc-disjoint (s; t)-

paths, with capacity x

j

reserved on each arc of path P

j

(j = 1; : : : ;m).

In Section 4, we consider the case where the (s; t)-paths P

1

; : : : ; P

m

to be used are pre-

speci�ed. In this case, we may as well consider each path as a single arc from s to t, whose cost

is the sum of the individual arc-costs, and we have the k-Failure Allocation problem, an

instance of which consists simply of a demand T and a sequence of costs c

1

; : : : ; c

m

, where we

assume that c

1

� � � � � c

m

. The problem is to �nd a non-negative real vector x = (x

1

; : : : ; x

m

)

to minimize cost(x) =

P

c

j

x

j

subject to the (T; k)-resilience constraint that the sum of any

m�k of the x

j

is at least T . If we additionally impose the constraint that the x

j

be integers,

then we have the Integer k-Failure Allocation problem.

We give an extremely simple algorithm for solving both k-Failure Allocation and its

integer counterpart. For the case k = 1, a polynomial time algorithm (for the integer version)

based on convex optimization is already explained in the work of Bartholdi et al [7] which

addresses certain integer programming problems arising from matrices with the circular ones

properties in each row. Our results provide additional information on the structure of the

optimal fractional and integral solutions which is needed later in the paper when we study

the Integer Diverse-Path Resilience problem without the paths being pre�xed. Some

of these structural properties were independently observed by Bienstock and Muratore [10]

who gave a complete linear description for an associated polyhedron.

In Sections 5 and 6, we turn to the case when our diverse-path reservation x may use any

set of diverse (s; t)-paths. The problems we consider are the Diverse-Path Resilience

problem and Integer Diverse-Path Resilience problem, which are exactly the same as

General Resilience and Integer Resilience except that the reservation vector x is

required to be a diverse-path reservation.

Using the information from Section 4 about the nature of any optimal diverse-path reserva-

tion, we give a simple combinatorial algorithm, based on �nding successive shortest paths in

the network, to solve Diverse-Path Resilience.

However, Integer Diverse-Path Resilience turns out to be NP-hard, even for k = 1.

Here instead we give a polynomial time

15

14

-approximate algorithm in the case k = 1, and

4

show this bound is the best possible (if P 6= NP). Similar results hold if k takes other values,

or is unrestricted.

We conclude the paper with a discussion of a possible application to the case of more than

one source-destination pair, and a few remarks about other types of resilience problems.

3 Polyhedral Formulation

Given a directed graph D = (V;A), and any S � V , let �

+

(S) denote the set of arcs with

tail in S and head in V �S, and set �

�

(S) = �

+

(V �S). We call S � V an (s; t)-set if s 2 S

and t 2 V � S.

Let Q

+

denote the set of non-negative rational numbers, so that Q

A

+

is the set of all assign-

ments of non-negative rationals to each member of the arc-set A, which we frequently view

as a vector. For any vector x 2 Q

A

+

and A

0

� A, we denote by x(A

0

) the sum

P

a2A

0

x

a

.

The problem of �nding a minimum cost (T; k)-resilient reservation vector can be expressed

as an optimization problem over a certain polyhedron, which we now describe.

For any rational T , (s; t)-set S, and set K � �

+

(S) of at most k arcs, the partial T -cut

constraint associated with the pair (S;K) is the constraint x(�

+

(S)�K) � T: The resilience

polyhedron is de�ned by the system of all partial cut constraints.

R(T; k;D) =

(

x 2 Q

A

+

: x(�

+

(S)�K) � T for each (s; t)-set S

and K � �

+

(S) with jKj � k

)

: (1)

Note that R(T; k;D) is empty if there is an (s; t)-set S with �

+

(S) of size at most k, and oth-

erwise R(T; k;D) is full-dimensional. It is straightforward to verify that R(T; k;D) consists

exactly of the (T; k)-resilient vectors, and so the General Resilience problem { �nd-

ing a minimum cost (T; k)-resilient reservation { is that of minimizing the linear function

cost(x) =

P

a2A

c

a

x

a

over R(T; k;D).

A consequence of this formulation is that, for each �xed k, there is a polynomial time algo-

rithm to solve General Resilience. Indeed, it is easily seen that the separation problem

for R(T; k;D) amounts to solving at most jAj

k

maximum ow problems. Moreover the prob-

lem can be rephrased as that of �nding a single edge capacity vector x, together with an (s; t)

ow vector y

K

of value T for each failing set K of size k (i.e., with y

K

a

= 0 for a 2 K), subject

to the constraint y

K

a

� x

a

for each arc a and each failing set K. This formulation constitutes

a linear program with a polynomially bounded number of variables and constraints. This is

not, however o�ered as a practical approach, even for k = 1, and the remainder of the paper

addresses the task of �nding more direct combinatorial algorithms.

4 Reservations on a Fixed Set of Paths

A version of the material in this section, written for a non-technical audience, appears as

[13]. A more thorough handling of the polyhedron considered implicitly herein (including a

5

complete linear description of the integer hull) has been given by Bienstock and Muratore [10].

The case k = 1 can also be regarded as a special case of a problem treated by Bartholdi,

Orlin and Ratli� [7]; our methods give a somewhat simpler solution in this special case.

We start by considering k-Failure Allocation and its integer version. Recall that these

problems can be formulated as follows.

k-Failure Allocation

Given a demand T , and a sequence of non-negative costs c

1

� c

2

� : : : � c

m

, �nd a non-

negative real vector x = (x

1

; x

2

; : : : ; x

m

) minimizing cost(x) =

P

m

i=1

c

i

x

i

, subject to the

constraint that

P

i 62K

x

i

� T for every set K of size k.

Integer k-Failure Allocation

As above, with x required to be integer.

We start with a result that is fundamental in much of the rest of the paper. For k < j � m,

let z

j;k

be the reservation vector de�ned by

z

j;k

i

=

�

T=(j � k) i � j

0 i > j.

Theorem 4.1 An optimal solution to k-Failure Allocation is obtained at one of the

solutions z

j;k

.

Proof. Because of the symmetry of the situation and the ordering of the costs c

i

, it is

clear that there is an optimal solution such that x

1

� x

2

� : : : � x

m

. Thus we lose nothing

by including these inequalities as constraints. Once we do this, we see that, if the constraint

x

k+1

+ x

k+2

+ : : : + x

m

� T is satis�ed, all the other resilience constraints given by the

removal of k of the paths are automatically satis�ed. Thus we may reformulate the problem

as follows.

Given a demand T , and a sequence of costs c

1

� c

2

� : : : � c

m

, �nd non-negative real

numbers x

1

; : : : ; x

m

to minimize

P

i

c

i

x

i

, subject to the constraints x

1

� x

2

� : : : � x

m

� 0

and x

k+1

+ : : :+ x

m

� T .

We note for future reference that the same reformulation goes through if the x

i

are all

constrained to be integers.

Consider a basic optimal solution for the resulting linear program which necessarily satis�es

m linearly independent inequalities with equality. If there are j non-zero variables at the

optimum, then the only possibility is that all of the inequalities x

1

� x

2

, . . . , x

j�1

� x

j

,

x

j+1

� : : : � x

m

� 0 and x

k+1

+ : : :+x

m

� T are satis�ed with equality, i.e., that x

1

= x

2

=

: : : = x

j

= T=(j � k) and x

j+1

= : : : = x

m

= 0. This is just the solution z

j;k

and the result

follows.

Solving k-Failure Allocation thus amounts to choosing amongst the solutions z

j;k

. In fact

the structure of the problem allows a particularly simple procedure for doing this. Note that

1

T

cost(z

j;k

) is equal to A

j;k

= (c

1

+ : : :+c

j

)=(j�k), which is the average of c

1

+c

2

+ : : :+c

k+1

,

6

c

k+2

, . . . , and c

j

. The A

j;k

are decreasing in j up to the minimum, which is attained for

the last j where c

j

< A

j�1;k

, and increasing thereafter: this unimodality property will be a

recurring theme. Thus we may terminate our such for the minimum value of cost(z

j;k

) if ever

we �nd that c

j+1

� A

j;k

.

For Integer k-Failure Allocation, we show that the following procedure su�ces.

First �nd the optimal fractional solution z

j;k

, i.e., the optimal solution of the corresponding

instance of k-Failure Allocation. Then (if z

j;k

is not already an integer vector) consider

the two integer solutions \nearest" to z

j;k

, as follows.

(a) Set r equal to either bT=(j�k)c or dT=(j�k)e. (Here dae denotes the next integer above

the real number a, and bac the next integer below.) Note that r may be zero if T < j � k.

(b) If r is one of the two chosen values and r is nonzero, we attempt to construct a solution

x with all the non-zero x

i

, except possibly one, equal to r. To do this, we set ` = dT=re+ 1;

if ` � m, set x

1

= x

2

= : : : = x

`�1

= r, x

`

= T � (` � k � 1)r, and x

`+1

= : : : = x

m

= 0.

(The choice of ` ensures that x

`

� x

1

= r. If r = bT=(j � k)c, we could have ` > m, but this

is not possible with r = dT=(j � k)e.)

Note that this is a feasible solution, since removing any k of the x

i

leaves capacity at least

(`� k � 1)r + x

`

, which is constructed to be at least T .

(c) We now have either one or two candidate integral solutions, corresponding to the two

choices of r in (a). We denote by z

j;k;+

the solution with r = bT=(j � k)c (if it is feasible),

and by z

j;k;�

the solution with r = dT=(j � k)e (which is always feasible)

1

. To �nish, just

calculate the costs of the two solutions, and choose the lower.

Theorem 4.2 Suppose we have an instance of k-Failure Allocation in which the optimal

solution is z

j;k

. Then the optimal solution x to the corresponding instance of Integer k-

Failure Allocation is either x = z

j;k;+

or x = z

j;k;�

.

Proof. We work with the reformulation of the problem as in the beginning of the proof

of Theorem 4.1, which, as we noted, is also valid for the integer case. Suppose that x is an

optimal integer solution.

Clearly we have x

1

= x

2

= : : : = x

k+1

at the optimum. Now suppose that some x

j

is non-zero,

but that not all of x

1

; : : : ; x

j�1

are equal. Then let i be the minimum index with x

i

< x

1

;

note that i � k + 2 by the previous observation. Also let x

`

be the last non-zero variable, so

k + 2 � i < j � `. Increasing x

i

by one and decreasing x

`

by one keeps the solution feasible,

and x

k+1

+ : : :+ x

m

is unaltered. Also, this operation does not increase the cost.

We have thus shown that one may restrict attention to integral solutions where there is some

j, with k + 2 � j � m, such that all of x

1

, . . . , x

j�1

are equal, and all of x

j+1

; : : : ; x

m

are

equal to 0. If the value of x

j

is q, then the common value of the earlier x

i

is (T�q)=(j�k�1),

which is an integer, at least q.

1

The notation z

j;k;+

, z

j;k;�

indicates moving from z

j;k

towards z

j+1;k

or z

j�1;k

.

7

At this point, there is still potentially one solution for each integer value x

1

� T=m, namely

to set j = k + dT=x

1

e, and q = T � (j � k � 1)x

1

; observe that this solution is equal to

q(j � k)

T

z

j;k

+

�

1�

q(j � k)

T

�

z

j�1;k

:

Thus each of our candidate integral solutions is a convex combination of two consecutive

z

i;k

s. Let A be the set of all such convex combinations; we think of A as a \path" with

vertices corresponding to z

k+1;k

; : : : ; z

m;k

; any vector on this path gives a feasible solution.

Note that the �rst coordinate value x

1

decreases along A, and the solution cost is unimodal

along A, since it is linear between the vertices. If the fractional optimum is attained at a

vertex with x

1

equal to r, then the lowest cost integer solution on A, and hence the overall

integer optimum, is obtained by taking x

1

to be either dre or brc. This amounts to taking

either z

j;k;+

or z

j;k;�

, as required.

We close this section with a bound relating the costs of the optimal integral and fractional

solutions to k-Failure Allocation.

Proposition 4.3 For any j > k � 1, cost(z

j;k;�

)=cost(z

j;k

) < 1 +

k(j�k)

jT

< 1 +

k

T

.

Proof. Recall that, in the solution z

j;k

, the j cheapest paths are chosen, each with capacity

T=(j � k). The \rounded" solution z

j;k;�

is obtained from this by taking the `� 1 cheapest

paths with capacity x = dT=(j�k)e, and the next cheapest path with capacity T�(`�k�1)x,

where ` = dT=xe + k � j.

The �rst observation is that the average cost per unit of reservation in z

j;k;�

is no greater

than that in z

j;k

. Thus cost(z

j;k;�

)=cost(z

j;k

) is at most the ratio of the total numbers of

units of capacity reserved in the two allocations.

In z

j;k

, a total of jT=(j � k) units of capacity are allocated, while in z

j;k;�

, the total is

(`� 1)x+ T � (`� k � 1)x = T + kx. Hence we have

cost(z

j;k;�

)

cost(z

j;k

)

�

T + kx

jT=(j � k)

= 1 +

k

jT

((j � k)x� T) :

Now (j � k)x� T < j � k, by de�nition of x, so we have the estimate as claimed.

Corollary 4.4 If O

I

is the cost of the optimal solution to an instance of Integer k-Failure

Allocation with target ow T , and O

F

the cost of the optimal solution to the corresponding

instance of k-Failure Allocation, then O

I

< (1 + k=T)O

F

.

Consideration of the proof of Proposition 4.3 shows that the ratio (1+k=T) cannot in general

be improved. Indeed, if our network consists of a large number M of paths of cost 1, then it

is easy to see that O

I

= T +k, whereas O

F

=MT=(M�k); asM !1, O

I

=O

F

! (1+k=T).

8

5 Diverse-Path Reservations without Speci�ed Paths

We now turn to the Diverse-Path Resilience problem, when we are still required to �nd

a resilient reservation consisting of a set of diverse paths in a given network D, but we are

not restricted as to what paths we may use. Our aim here is to give a fast algorithm for

Diverse-Path Resilience, whatever number k of failures is to be allowed for.

Theorem 4.1 implies that the optimal solution has as support the arcs of some j > k diverse

paths, with each arc in the support given capacity T=(j � k). Of course, j can only take

integer values up to the (s; t)-connectivity � = �(D) of D. We may take advantage of this

structure and apply the successive shortest path method { c.f. [1] { for minimum cost ow

problems, thus only needing to solve �(D) shortest path problems.

For an arc a = (u; v) 2 A, we let a

�

denote an \arti�cial" arc (v; u), not present in D. In

the course of the following algorithm, we construct a series of auxiliary digraphs D

j

, each of

which contains exactly one from each pair a; a

�

. We assume that we are given a digraph D

with �(D) > k.

In the algorithm Paths below, we �nd a succession of arc-sets P

1

;P

2

; : : :, where each P

j

is

the arc-set of a set of j diverse (s; t)-paths of minimum cost. Each P

j+1

is derived from P

j

by

adding a cheapest path in the network D

j

with costs c

j

. Adding the arc a

�

corresponds to

removing the arc a. In line with our earlier notation, z

j;k

denotes the diverse-path reservation

using the paths of P

j

. The algorithm terminates if z

j+1;k

is at least as expensive as z

j;k

.

Paths(D; k)

f

j = 0;D

0

= D; c

0

= c;P

0

= ;;

While (D

j

contains a directed (s; t)-path)

Let Q

j

be the arc-set of a minimum c

j

-cost directed (s; t)-path in D

j

Set P

j+1

= (P

j

�R) [F

where R = fa 2 A : a

�

2 Q

j

g

and F = A \Q

j

If j � k, let z

j+1;k

be the vector obtained by assigning

T=(j + 1� k) to each arc in P

j+1

If j � k and cost(z

j+1;k

) � cost(z

j;k

)

then Output(z

j;k

) and Quit

D

j+1

; c

j+1

are the same as D

j

; c

j

except

if a 2 R

remove a

�

, and include a with cost c

j+1

a

= c

a

if a 2 F

remove a, and include a

�

with cost c

j+1

a

�

= �c

a

Set j = j + 1;

EndWhile

Output(z

j;k

)

g

9

We also refer to the version of the algorithm which does not terminate early and thus generates

a reservation vector z

j;k

for every j = k + 1; : : : ; �(D).

Proposition 5.1 (c.f. [1]) Let c be a nonnegative vector of arc costs in a network D =

(V;A). The algorithm Paths �nds a minimum cost (T; k)-resilient diverse-path reservation.

To establish correctness, we need two facts. First, for each j, the collection P

j

induces a

minimum cost collection of j diverse (s; t)-paths; this follows from the correctness of the

successive shortest path method. This implies that each solution z

j;k

is the minimum cost

solution using j paths, and hence the minimum cost (T; k)-resilient vector is among these

vectors z

j;k

. Moreover, traditional ow theory implies that for each j � k + 1, z

j;k

is a

minimum cost ow of value jT=(j � k) subject to the capacities T=(j � k) on each arc.

Second, as we now show, the sequence cost(z

j;k

) is unimodal for j � k + 1, and so early

termination is justi�ed.

Proposition 5.2 Let h, i and j be such that k < h < i < j � �(D). If cost(z

h;k

) � cost(z

i;k

)

then cost(z

i;k

) � cost(z

j;k

).

Proof. Suppose the contrary: there exists h, i, j, with h < i < j such that cost(z

h;k

) �

cost(z

i;k

) and cost(z

i;k

) > cost(z

j;k

). Let M = T

i

i�k

and choose � 2 (0; 1) such that

i

i�k

=

�

h

h�k

+(1��)

j

j�k

. Then z

0

= �z

h;k

+(1��)z

j;k

is a ow of value iT=(i�1) and does not exceed

T=(i � 1) on any arc. Thus by the remarks preceding the proposition, cost(z

0

) � cost(z

i;k

).

But of course cost(z

0

) = �cost(z

h;k

) + (1� �)cost(z

j;k

) < cost(z

i;k

), a contradiction. 2

6 Integer Diverse-Path Reservations

We now turn to Integer Diverse-Path Resilience, where we are required to �nd a

minimum-cost diverse-path reservation taking integer values. We assume throughout this

section that the demand T is also an integer.

Again the results of Section 4 give us information about the structure of an optimal solution:

Theorem 4.2 shows that the support of an optimal solution consists of a collection of diverse

(s; t)-paths P

1

; P

2

; : : : ; P

j

where the arcs of the �rst j�1 paths will reserve a common amount,

r, of capacity, and the last path's arcs will reserve capacity T�(j�1�k)r � r.

2

We now show

that the subproblem with k = 1 and T = 3, denoted by 3-idp, is NP-hard. Let 2Div-Paths

denote the problem of determining whether a given digraph D, with four distinct nodes s

1

,

t

1

, s

2

, t

2

, contains a pair of arc-disjoint paths P

1

; P

2

, where P

i

joins s

i

and t

i

(i = 1; 2).

Fortune, Hopcroft and Wyllie [16] show that this problem is NP-complete.

Theorem 6.1 The problem 3-idp is NP-hard. Furthermore, unless P = NP, there is no

polynomial time (1 + ")-approximation algorithm with " <

1

14

.

2

In essence, we thus need to solve an integer 2-multicommodity ow problem where both commodities have

the same source and destination.

10

Proof. Suppose that we are given an instance of 2Div-Paths as above. Construct a

digraph obtained from D by adding new nodes s; t as well as the arcs (s; t), (s; s

1

), (s; s

2

),

(t

1

; t) and (t

2

; t) with costs 3, 1, 2, 1 and 2 respectively. All remaining arcs have cost zero.

This is our instance of 3-idp. From Theorem 4.2, we deduce that an optimal 3-resilient

reservation on diverse paths will either have support on (i) 2 diverse paths, in which case

capacity 3 is reserved on each of the arcs of these paths, or (ii) 3 diverse paths in which case

two of the paths will have reserved capacity 2 and the third capacity 1.

Note that the cheapest collection of 2 diverse paths has cost 5 and hence any solution of the

form (i) will have cost at least 15. Next note that if there exists a positive solution to the

instance of 2Div-Paths, with P

i

a path between s

i

; t

i

(i = 1; 2), then by assigning capacity

2 to the arc (s; t) and the arcs of P

1

, and capacity 1 to the arcs of P

2

we obtain a solution

to 3-idp of cost 14. Conversely, if the instance of 2Div-Paths has no solution, then any

\3-path" solution to 3-idp will use only paths of cost 3, from which we deduce that the

reservation will cost at least 15. Thus the optimal solution to the instance of 3-idp is 14 if

and only if the instance of 2Div-Paths has a positive solution, and is otherwise at least 15.

The result follows.

We continue to concentrate on the case k = 1, but allow T to take arbitrary integer values.

We have already seen in Proposition 4.3 that applying the rounding procedure to an optimal

fractional solution yields a (1+

1

T

)-approximation to the optimal fractional solution, and hence

to the optimal integral solution. It is clear that the optimal fractional solution is integral in

the case T = 2, so in fact we have a polynomial time

4

3

-approximation algorithm for arbitrary

T : we now improve this to a

15

14

-approximation algorithm which, in view of Theorem 6.1, is

best-possible. Note that, by Proposition 4.3, we may assume that T � 13.

Consider the polynomial time algorithm A (based on Paths) that �nds, for each value of

j, the fractional solution z

j;1

based on some cheapest set of j diverse paths, and the two

\rounded" integer solutions z

j;1;�

and z

j;1;+

, and chooses the best among all of the integer

solutions. The algorithm A can fail to �nd the optimal integer solution because it may use

a minimum cost set of ` paths in which the costs are distributed \more evenly" between the

paths (in particular, the most expensive path is cheaper) than in some other (not necessarily

even minimum cost) set of ` paths. All we know is that an optimal solution for an instance

of Integer Diverse-Path Resilience has the same form as either z

`;1;�

or z

`;1;+

for some

`, since it arises from a similar rounding process applied to some collection of diverse paths.

Let O

F

be the cost of a fractional optimum solution, O

I

the cost of an integer optimum

solution, and O

A

the best solution among those considered by the algorithm, i.e., the value

returned by A. Clearly we have O

F

� O

I

� O

A

.

Theorem 6.2 The algorithm A is a

15

14

-approximate algorithm for Integer Diverse-Path

Resilience with k = 1, that is, for each instance: O

A

�

15

14

O

I

.

We note that the quality of approximation by the algorithm depends greatly on the input

T . If we view A as an in�nite collection of algorithms fA

T

g

1

T=1

, each restricted to instances

with a �xed value of the demand T , then many of these { in particular, those with large

11

values of T { are (1 + �)-approximate algorithms with � <

1

14

. Indeed, Proposition 4.3 tells

us that, for each T , O

A

< (1 + 1=T)O

F

� (1 + 1=T)O

I

.

Furthermore, we note in the course of the proof that, for T = 1; 2; 4; 6 and 12, A solves the

problem exactly.

Proof. Take any instance of the problem, and let z

�

be an optimum solution, say using

paths P

1

; : : : ; P

`

; P

`+1

. We certainly know that there is no better solution using these paths,

so by Theorem 4.2 we know that P

1

; : : : ; P

`

all have the same reserved capacity r under z

�

,

and path P

`+1

, which has the greatest cost among these paths, has reserved capacity y � r.

Furthermore, r is either bT=(`� 1)c or dT=`e, with T = (`� 1)r + y.

Clearly we can assume that O

I

6= O

A

. In particular, this means that 0 < y < r, otherwise

one of z

`+1;1

or z

`;1

would be an integral solution found by A whose cost was at most that

of z

�

. We may thus assume that ` � 2 and that 2 � r � (T + 1)=2.

The values of T and r determine y and `. Also, as noted above, Proposition 4.3 implies

the result for T � 14, so we may assume that T � 13 and that r � dT=2e � 7. There are

thus only a �nite number of possible forms of z

�

(in fact, just 23 pairs (T; r) satisfy all the

restrictions mentioned so far), and we rule all of these out using the same basic method. At

this point, let us observe that there are no cases with T = 1; 2; 4; 6 or 12; for these values of

T , any r not dividing T exactly is not of the form bT=(`� 1)c or dT=`e for any integer `. In

particular, we may assume that we have T � 3.

We require a lower bound on cost(z

�

) = O

I

. Notice that z

�

can be written as y times the

characteristic vector of some set of `+ 1 diverse paths, plus (r � y) times the characteristic

vector of some set of ` diverse paths. Let C

i

be the cost of reserving one unit of capacity on the

arcs in a cheapest collection of i diverse paths. So we have O

I

= cost(z

�

) � yC

`+1

+(r�y)C

`

:

Our algorithm A considers some integer solution z

y

of the same form as z

�

(i.e., the same

values of T; r; y; `), using some set of `+1 paths of cost C

`+1

. The cost of z

y

is at most what

it would be if all the `+ 1 paths had the same cost (`r + y)C

`+1

=(` + 1). So O

A

is at most

this quantity, i.e.,

C

`+1

�

`+ 1

`r + y

O

A

=

`+ 1

T + r

O

A

:

We aim for a similar bound on C

`

, and to get this we need to look at a solution produced by

A on at most ` paths. Accordingly, let r

0

= dT=(` � 1)e; there is some integer solution with

reserved capacity r

0

on the �rst m < ` paths from C

`

, and v � r

0

on one further path, with

total of reserved capacities on all the paths equal to T +r

0

. Our algorithm will have looked at

an integer solution with a cost at least as low as some solution of this form, and the average

cost of a path in any solution of this form is at most C

`

=`, as in the proof of Proposition 4.3.

So we have O

A

� (T + r

0

)C

`

=`, i.e., C

`

�

`

T+r

0

O

A

: We conclude that

O

I

�

�

y(`+ 1)

T + r

+

(r � y)`

T + r

0

�

O

A

:

12

After a little manipulation, this becomes

O

I

O

A

� 1�

(r

0

� r)(r � y)`

(T + r)(T + r

0

)

� 1�G:

We could now run through all the 23 cases separately and show that G � 1=15 in each case,

but we can save a little e�ort.

First, we consider all cases with ` = 2. In this case, we have r

0

= T , and r = dT=2e, which

implies that r

0

= T = 2y + 1 and r = y + 1. Now G = 2y=(3y + 2)(4y + 2) � 1=15 for y � 1.

Next, if r = 2, we have y = 1, T = 2`�1 and r

0

= 3. This gives G = `=(2`+1)(2`+2) � 1=15

for ` � 2. Assume from now on that `; r � 3. This implies that T � 7 and that r < T=2.

If r

0

= r + 1 then, since also (r � y)` < r` < T + r, we have G < 1=(T + r + 1), and we are

done if T + r � 14. So we may assume T � 10, whence, since ` � 3, we have r � 4. On the

other hand, if r

0

= dT=(` � 1)e � r + 2 � (T + 1)=` + 2, then we have T � `

2

+ ` � 1; thus

the only two cases with T � 13 are ` = 3 and T = 11; 13.

From here on in, there seems to be no great saving on dealing with all the cases individually.

Here are all the cases not so far ruled out.

T r ` y r

0

G

7 3 3 1 4 6=110

8 3 3 2 4 3=132

9 4 3 1 5 9=182

10 3 4 1 4 8=182

10 4 3 2 5 6=210

11 4 3 3 6 6=255

13 5 3 3 7 12=360

All the values for G above are less than 1=15, so the theorem is proved.

It is clear that this technique can be used to prove similar results for other values of k. If k

is allowed to take any value, we have the following result.

Theorem 6.3 There is a polynomial time

6

5

-approximation algorithm for Integer Diverse-

Path Resilience, with k as part of the input. Furthermore, there is no polynomial time

(1 + �)-approximation algorithm for the problem with � <

1

5

unless P = NP.

Proof. (Sketch) Our algorithm is the obvious adaptation of algorithm A: �nd optimal

fractional solutions z

j;k

for each possible j, round these solutions, and choose the best. We

de�ne O

F

, O

I

and O

A

as before.

An argument exactly as in Theorem 6.2 shows that, if O

I

and O

A

are not equal, then

O

I

O

A

� 1�

(r

0

� r)(r � y)`k

(T + rk)(T + r

0

k)

� 1�G;

13

where r

0

= dT=(`�k)e, r is equal to either bT=(`�k)c or dT=(`�k+1)e, and T +rk = `r+y,

with 0 < y < r. So we need to show that the quantity G is at most 1=6 in all cases.

Note that T + rk > `r and T + r

0

k > r

0

k, so we have

G �

(r

0

� r)(r � y)

rr

0

:

For both possible values of r, one can show that the integers r

0

, r and (r

0

� r)(r � y) satisfy

r

0

> r > (r

0

� r)(r � y), so G is at most n=(n + 1)(n + 2) for some non-negative integer n,

and this quantity is always at most 1=6, as required.

To see that this approximation ratio is best possible, take an instance I of 2Div-Paths,

and a large value of k; set T = 3, and construct an instance of Integer Diverse-Path

Resilience as follows. There are nodes a

i

; b

i

; c

i

; d

i

, for i = 1; : : : ; k + 1, as well as s and t.

There are arcs of cost 1 from s to each a

i

, from c

i

to b

i+1

(i = 1; : : : ; k), and from each d

i

to

t. Also there are arcs of cost 2 from s to b

1

and from c

k+1

to t. We also take a copy of our

instance I of 2Div-Paths for each i, with initial nodes a

i

and b

i

and corresponding terminal

nodes d

i

and c

i

: all arcs involved cost 0. If there are arc-disjoint paths linking each a

i

and d

i

,

and each b

i

and c

i

, then we can use these to make k+ 1 diverse paths of cost 2, and another

path (through all the b

i

and c

i

), of cost k+4. Reserving 2 units on the �rst k+1 paths and

1 unit on the last gives a (3; k)-resilient reservation of cost 5k+8. If there are no such linking

paths, then there is no reservation costing less than 6k + 6 (we can either reserve capacity 3

on each of the k + 1 diverse paths of cost 2, or use the only set of k + 2 diverse paths, in

which each path has cost 3).

7 Integer Resilience

We next show that the problem of �nding a minimum cost integral (T; k)-resilient vector is

NP-hard, even in the single-failure case k = 1. We couch the problem as a decision problem.

Integer Resilience

Instance: a digraph D, with integer costs c

ij

on the arcs, with a single source s and desti-

nation t, a demand T (integer), and a target cost C (integer).

Question: is there an integer reservation vector x on the arcs of D such that c � x � C, and

such that x is (T; 1)-resilient?

Theorem 7.1 Integer Resilience is strongly NP-complete.

Proof. (We omit some of the details: a full proof can be found in [11].)

Certainly the problem is in NP, since checking (T; 1)-resilience simply involves �nding ows

of value T in the networks obtained by removing individual edges.

14

To prove the problem is NP-complete, we give a reduction from 3D-Matching. Recall that

an instance of 3D-Matching consists of three sets A, B, C of size n, and a collection T of

m \triangles" each containing exactly one element from each of A, B and C; the question is

whether A [B [C can be written as the disjoint union of n triangles from T .

Suppose that we are given an instance of 3D-Matching as above. We show how to construct

an instance of Integer Resilience with m + 3n + 2 nodes, 11m + 3n arcs each of cost 1,

n, or 2n, such that there is a (4m + 3n � 1)-resilient integer reservation of cost at most

(2n+ 1)(4m + 3n) + n if and only if the original instance did possess a 3D-matching.

We take one node of D for each triangle abc 2 T , one node for each element of A [B [C,

and also nodes s and t. We take four parallel arcs, each of cost 1, from s to each node

corresponding to an element of T . Each node abc has seven arcs leaving it: four, of cost 2n,

go directly to t and one, of cost n, to each of the constituent elements a, b and c. Finally,

there is a single arc of cost n from each element of A [B [C to t.

Given a 3D-matching U , we can �nd a (T; 1)-resilient reservation, with T = 4m + 3n � 1,

by reserving capacity 1 on all arcs entering t, and all arcs leaving elements of U ; we further

reserve capacity 1 on arcs from s to elements of T n U , and capacity 2 on arcs from s to

elements of U . It is easy to check that this reservation is (T; 1)-resilient, and has the required

cost (2n+ 1)(4m+ 3n) + n.

Conversely, if there is a (T; 1)-resilient reservation with this cost, one may easily check that

it must involve reserving capacity 1 on all arcs into t, and also on one arc entering each node

of A [B [C. Such a set of arcs has total cost 2n(4m + 3n), and includes between 4 and 7

arcs from each node of T . For v 2 T , let d(v) be the number of reserved arcs leaving v.

For v 2 T , the reservations on the four arcs between s and v must total at least d(v), and

the sum of any three of them must be at least d(v)� 1 (since after deleting an arc there still

exists a T -ow). The minimum cost of such a reservation between s and v is just 4 if d(v) = 4

but d(v) + 1 if d(v) 2 f5; 6; 7g. So the total cost of a (T; 1)-resilient reservation consistent

with the values d(v) is 2n(4m + 3n) +

P

v

d(v) plus the number N of elements v for which

d(v) > 4. We know that

P

v

d(v) = T + 1 = 4m+ 3n, and one may check that N � n, with

equality if and only if d(v) = 7 for just n elements of T , and d(v) = 4 for the remainder. The

arcs out of T can be distributed in such a manner only if those elements v with d(v) = 7

constitute a 3D-matching in the original instance.

On the positive side, there is a simple (k+1)-approximate algorithm for Integer Resilience,

namely to �nd a cheapest set of k+1 edge-disjoint paths and reserve capacity T on each arc.

The following result states that this is indeed a (k + 1)-approximate algorithm.

Proposition 7.2 If x is a (T; k)-resilient reservation vector, then cost(x) �

1

k+1

cost(z

k+1;k

).

Proof. Let x be a minimum cost (T; k)-resilient vector. De�ne x

0

by setting, for each arc

a, x

0

a

= min((k + 1)x

a

; T); it follows that x

0

� x.

Let S be any (s; t)-set. We claim that x

0

(�

+

(S)) � (k + 1)T . Suppose �rst that there is

a set K of k + 1 arcs in �

+

(S) such that, for a 2 K, x

a

�

T

k+1

, and so x

0

a

= T . Then

15

x

0

(�

+

(S)) �

P

a2K

x

0

a

= (k + 1)T .

If instead x

a

<

T

k+1

for all arcs a 2 �

+

(S) except for those in a set K of k arcs. Then

x(�

+

(S) �K) � T , and so x

0

(�

+

(S) �K) = (k + 1)x(�

+

(S) �K) � (k + 1)T . This proves

our claim.

Now, since x

0

(�

+

(S)) � (k + 1)T for each (s; t)-set S, there exists an (s; t) ow x

00

of value

(k + 1)T such that x

00

� x

0

, so in particular no arc has reserved capacity more than T ; thus

x

00

is a (T; k)-resilient vector.

As we remarked earlier, the diverse path reservation z

k+1;k

is a minimum cost (s; t) ow of

value (k + 1)T , subject to an upper bound T on the ow through any given arc. It follows

that cost(z

k+1;k

) � cost(x

00

) � cost(x

0

) � (k + 1)cost(x).

Thus we have that the minimum cost diverse-path reservation has at most k + 1 times the

cost of an optimal (T; k)-resilient reservation. Of course, this is of greatest interest in the

case k = 1. The ratio k+1 between the two optimal costs is best possible, as can be seen by

considering a network D with three nodes s, u and t, k + 1 arcs of cost 1 from s to u, and

many arcs of large cost c from u to t.

8 Conclusions

Future Directions

(a) (b)

T
T/2

T/2

T/2

s t

T/2

T/2

T

T

T

T=3

T=3

T=3

T=3

T=3

t

s

T=3

Figure 1: (a) vertex of R(T; 1;D) with a cycle; (b) basic solution for both arc-failure and

node-failure resilience.

Although General Resilience can be solved in polynomial time for �xed k, we have been

unable to �nd a truly practical algorithm for the problem even in the case k = 1. It is

natural to believe that there might be an algorithm which uses some generalization of cycle

augmentation for standard minimum cost ows. In order to explain why it is likely to be

di�cult to �nd such an algorithm, we give in Figures 1(a) and 1(b) two examples of vertices

16

of polyhedra R(T; 1;D), which of course give the unique optimal solution to instances of

General Resilience. Indeed, the polyhedral structure for general resilience appears to be

quite rich; further examples are provided in [11].

There are other versions of resilience questions which we did not investigate. For instance,

one may wish to guard against node failures instead of or as well as arc failures: this problem

can be formulated using our previous models and then applying standard splitting operations

on nodes other than s and t. Figure 1(b) also represents a basic solution for such a fractional

node-failure resilience problem.

In a further paper [12], we consider the e�ect of imposing upper bounds on the capacities

that can be reserved on each arc.

Finally, another critical concern is how we may recover from failures. In the case of diverse

path reservations, we have the best possible scenario. The node s can be programmed so

that if a communication path fails, it simply shunts its tra�c onto the remaining paths. For

general reservation vectors, the rerouting of tra�c may be more complex. Indeed, unless the

reservation vector was carefully constructed, tra�c on the non-failed communication paths

may need also to be rerouted from scratch. The distinction between whether or not we may

disturb non-failed tra�c ows leads to two types (strong and weak) of resilience problems;

these are discussed in some detail in the technical report [11].

Applications to More than one Source-Destination Pair

We now consider the problem where we are given a collection of node pairs (s

1

; t

1

); : : : ; (s

q

; t

q

)

as well as a collection of demands T

i

, i = 1; 2; : : : ; q and (possibly) a collection of integers

k

1

; : : : ; k

q

. Each commodity i must reserve capacity in a network D which is (T

i

; k

i

)-resilient

for the source-destination pair (s

i

; t

i

).

In developing solution techniques for a general multicommodity instance, we feel there is

signi�cant computational bene�t in insisting that each commodity is handled by diverse-

path reservation vectors. This is despite the fact that such reservations may cost more, even

in the 1-commodity case (e.g., Figures 1(a) and 1(b)). This approach replaces the complexity

of general resilience constraints with the simpler subproblem of deciding, for each commodity

i, the number n

i

of diverse paths to be included in the support of its reservation vector. This

subproblem may be handled by some branching scheme and, for any �xed choice of the n

i

's,

the optimization problem can be formulated as a much simpli�ed multicommodity network

design problem.

For instance, suppose that for each arc a we may purchase up to M

a

units of capacity, each at

cost c

a

. We then formulate the diverse-path multicommodity resilience problem, where each

commodity i must use a diverse-path reservation on (exactly) n

i

paths, as a mixed integer

program.

min

P

a

c

a

y

a

P

q

i=1

T

i

n

i

�k

i

r

i

a

= y

a

�M

a

for each arc a

r

i

(�

+

(v)) = r

i

(�

�

(v)) for each i and v 6= s

i

; t

i

r

i

(�

+

(s

i

))� r

i

(�

�

(s

i

)) = n

i

for each i

r

i

a

2 f0; 1g; y

a

2 Z for each a and i

17

A solution r

i

is thus an (s

i

; t

i

) 0-1 ow vector of value n

i

, and the �rst family of constraints

state that the total capacity reserved on an arc a is at most M

a

.

Acknowledgements: The research of the �rst and second authors is supported by the

EU-HCM grant TMRX-CT98 0202 DONET. They also acknowledge support from DIMACS

during extended visits to Bell Labs. Some of the �rst author's research was also carried out

while visiting the University of Memphis. The authors are grateful for insightful remarks and

encouragement from Gautam Appa, Dan Bienstock, Fan Chung, Michele Conforti, Bharat

Doshi, Susan Powell, Paul Seymour and Mihalis Yannakakis, as well as two anonymous

referees.

A major inspiration for this work was Dr. Ewart Lowe, of British Telecom, who tragically

died in a diving accident on May 22nd, 1998, o� the coast of Normandy. Ewart introduced

the authors to many mathematical problems in telecommunications. He also acted as mentor

to the �nal author during his projects for British Telecom. We dedicate this paper to the

memory of his inspiration, generosity, and his unbounded enthusiasm which are greatly missed

by all who knew him.

References

[1] A.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows { Theory, Algorithms, and Ap-

plications, Prentice Hall, Englewood Cli�s, New Jersey, 1993.

[2] D. Alevras, M. Gr�otschel, R. Wess�aly, Cost-e�cient network synthesis from leased lines,

Annals of Operational Research 76 (1998) 1{20.

[3] D. Alevras, M. Gr�otschel, R. Wess�aly, Capacity and survivability models for telecom-

munication networks, Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin, Technical

Report No. 97-24 (1997).

[4] N. Ascheuer, M. Gr�otschel, J. Rambau, Combinatorial online optimization in practice,

Optima 57 March 1998.

[5] A. Balakrishnan, T. Magnanti, J. Sokol, Y. Wang, Modeling and solving the single facility

line restoration problem, Working Paper OR 327-98 Operations Research Center, MIT,

April 1998.

[6] F. Barahona, Network design using cut inequalities, SIAM Journal of Optimization 6

(1996) 823{837.

[7] J.J. Bartholdi, J.B. Orlin, H.D. Ratli�, Cyclic scheduling via integer programs with

circular ones, Oper. Res. 28 (1980) 1074{1085.

[8] D. Bienstock, S. Chopra, O. G�unl�uk, C. Tsai, Minimum cost capacity installation for

multicommodity network ows, Math. Programming B 81 2 (1998) 177{199.

[9] D. Bienstock, O. G�unl�uk, Capacitated network design { polyhedral structure and com-

putation, INFORMS Journal on Computing 8 (1996) 243{260.

18

[10] D. Bienstock, G. Muratore, Strong inequalities for capacitated survivable network design

problems, Math. Programming, 89 (2000) 127{147.

[11] G. Brightwell, G. Oriolo, B. Shepherd, Some strategies for reserving resilient capacity,

LSE CDAM Report 98-04, March 1998.

[12] G. Brightwell, G. Oriolo, B. Shepherd, Reserving resilient capacity with upper bound

constraints, LSE CDAM Report 2000-03, March 2000.

[13] G. Brightwell, B. Shepherd, Consultancy report: Resilience strategy for a single source-

destination pair, LSE CDAM Report 96-22, Aug. 1996.

[14] S.J. Bye, M. Herzberg, An optimal spare-capacity assignment model for survivable net-

works with hop limits, Proc. GLOBECOM, San Francisco, 1994, 1601{1606.

[15] S.J. Bye, M. Herzberg, Spare-capacity assignment in survivable networks for multi-link

and node failures with hop limits, Proc. Networks'94, Sept. 1994, 381{386.

[16] S. Fortune, J. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem,

Theoretical Computer Science 10 (1980) 111{121.

[17] A. Frank, Connectivity and network ows, in Handbook of Combinatorics, R.Graham,

M. Gr�otschel, L. Lov�asz (eds.), North Holland Press, Amsterdam, 1992.

[18] M. Gr�otschel, C.L. Monma, M. Stoer, Design of survivable networks, in Network Mod-

els, Handbooks in Operations Research and Management Science, North Holland Press,

Amsterdam, 1995.

[19] O. G�unl�uk, Branch-and-cut algorithm for capacitated network design problems, (1996).

[20] R.R. Irashko, M.H. MacGregor, W.D. Grover, Optimal capacity placement for path

restoration in mesh survivable networks, IEEE International Conference on Communi-

cations, Dallas, (1996) 1568{1574.

[21] T. Magnanti, P. Mirchandani, R. Vachani, Modelling and solving the capacitated network

loading problem, MIT OR Working Paper OR 239-91 (1991).

[22] T. Magnanti, P. Mirchandani, R. Vachani, The convex hull of two core capacitated

network design problems, Math. Programming 60 (1993) 233{250.

[23] T. Magnanti, P. Mirchandani, R. Vachani, Modelling and solving the two facility capac-

itated network loading problem, Operations Research 43 (1995) 142{157.

[24] T. Magnanti, Y. Wang, Polyhedral properties of the network restoration problem - with

the convex hull of a special caseWorking Paper OR 323-97, Operations Research Center,

MIT, November 1997.

[25] H. Sakauchi, Y. Nishimura, S. Hasegawa, A self-healing network with an economical

spare-channel assignment, Proc. GLOBECOM, San Diego (1990) 438{443.

19

[26] I. Saniee, Optimal routing designs in self-healing communications networks, Int. Trans.

Op. Res. 3 (2) (1996) 187-195.

[27] B.D. Venables, W.D. Grover, M.H. MacGregor, Two strategies for spare capacity place-

ment in mesh restorable networks, IEEE International Conference on Communications,

Geneva, (1993) 267{271.

20

